Skip to main content
Log in

Effects of spark plasma sintering temperature on the tribological performance of TiB2–NiCr composite

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This study aimed to investigate the densification, microstructural, mechanical, and tribological properties of TiB2–NiCr composite. TiB2–NiCr composite was fabricated by spark plasma sintering (SPS) at different sintering temperatures ranging between 800 and 900 °C. The relative density of TiB2–NiCr composite increased by increasing SPS temperature, reaching a maximum for the composite sintered at 900 °C (~ 96.5%). The dry sliding wear performance of TiB2–NiCr composite was studied in the temperature range of 25–600 °C. Worn surface was analyzed by scanning electron microscopy (SEM) equipped with an energy dispersive X-ray spectrometer (EDS). The wear rate decreased with increasing SPS temperature. The higher densification, achieved by increasing SPS temperature resulted in lower porosity, better interfacial bonding, and higher hardness, all of which decreased the wear rate of the composite. The high-temperature wear behavior of composite showed promising performance. This study suggested that sintered TiB2–NiCr composites could be promising for wear resistance applications at elevated temperatures.

Graphical abstract

The effects of SPS temperature on densification, microstructural, mechanical, and tribological behavior of TiB2–NiCr composite over a wide temperature range

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. A.H. Navidpour, M. Fakhrzad, Photocatalytic activity of Zn2SnO4 coating deposited by air plasma spraying. Appl. Surf. Sci. Adv. 6, 100153 (2021)

    Article  Google Scholar 

  2. A.H. Navidpour, A. Hosseinzadeh, J.L. Zhou, Z. Huang, Progress in the application of surface engineering methods in immobilizing TiO2 and ZnO coatings for environmental photocatalysis. Catal. Rev. Sci. Eng. (2021). https://doi.org/10.1080/01614940.2021.1983066

    Article  Google Scholar 

  3. A.H. Navidpour, M. Salehi, H.R. Salimijazi, Y. Kalantari, M. Azarpour Siahkali, Photocatalytic activity of flame-sprayed coating of zinc ferrite powder. J. Therm. Spray. Technol. 26, 2030–2039 (2017)

    Article  CAS  Google Scholar 

  4. A.H. Navidpour, Y. Kalantari, M. Salehi, M. Amirnasr, M. Rismanchian, M. Azarpour Siahkali, Plasma-sprayed photocatalytic zinc oxide coatings. J. Therm. Spray. Technol. 26, 717–727 (2017)

    Article  CAS  Google Scholar 

  5. A.H. Navidpour, M. Salehi, M. Amirnasr, M. AzarpourSiahkal, Y. Kalantari, M. Mohammadnezhad, Photocatalytic iron oxide coatings produced by thermal spraying process. J. Therm. Spray. Technol. 24, 1487–1497 (2015)

    Article  CAS  Google Scholar 

  6. A.H. Navidpour, M. Fakhrzad, M. Tahari, Novel photocatalytic coatings based on tin oxide semiconductor. Surf. Eng. 35(3), 216–226 (2019)

    Article  CAS  Google Scholar 

  7. S. Nekahi, F. Sadegh Moghanlou, M. Vajdi, Z. Ahmadi, A. Motallebzadeh, M. Shahedi Asl, Microstructural, thermal and mechanical characterization of TiB2–SiC composites doped with short carbon fibers. Int. J. Refract. Hard. Met. 82, 129–135 (2019)

    Article  CAS  Google Scholar 

  8. Z. Hamidzadeh Mahaseni, M. Dashti Germi, Z. Ahmadi, M. Shahedi Asl, Microstructural investigation of spark plasma sintered TiB2 ceramics with Si3N4 addition. Ceram. Int. 44(11), 13367–13372 (2018)

    Article  CAS  Google Scholar 

  9. F. Shayesteh, S.A. Delbari, Z. Ahmadi, M. Shokouhimehr, M. Shahedi Asl, Influence of TiN dopant on microstructure of TiB2 ceramic sintered by spark plasma. Ceram. Int. 45(5), 5306–5311 (2019)

    Article  CAS  Google Scholar 

  10. G.B. Raju, B. Basu, Development of high temperature TiB2-based ceramics. Key. Eng. Mater. 395, 89–124 (2009)

    Article  CAS  Google Scholar 

  11. T.S.R.C.H. Murthy, J.K. Sonber, K. Sairam, R.D. Bedse, J.K. Chakarvartty, Development of refractory and rare earth metal borides and carbides for high temperature applications. Mater. Today. Proc. 3(9), 3104–3113 (2016)

    Article  Google Scholar 

  12. J.H. Park, Y.H. Lee, Y.H. Koh, H.E. Kim, S. Su Baek, Effect of hot-pressing temperature on densification and mechanical properties of titanium diboride with silicon nitride as a sintering aid. J. Am. Ceram. Soc. 83(6), 1542–1544 (2004)

    Article  Google Scholar 

  13. M. Barandika, J. Sánchez, T. Rojo, R. Cortés, F. Castro, Fe-Ni-Ti binder phases for TiB2-based cermets: a thermodynamic approach. Scr. Mater. 39, 1395–1400 (1998)

    Article  CAS  Google Scholar 

  14. T. Zhang, S. Song, C. Xie, G. He, B. Xing, R. Li, Q. Zhen, Preparation of highly-dense TiB2 ceramic with excellent mechanical properties by spark plasma sintering using hexagonal TiB2 plates. Mater. Res. Express 6, 125055 (2019)

    Article  CAS  Google Scholar 

  15. J. Park, Y. Koh, H. Kim, C. Hwang, E. Kang, Densification and mechanical properties of titanium diboride with silicon nitride as a sintering aid. J. Am. Ceram. Soc. 82(11), 3037–3042 (2004)

    Article  Google Scholar 

  16. S. Torizuka, K. Sato, H. Nishio, T. Kishi, Effect of SiC on interfacial reaction and sintering mechanism of TiB2. J. Am. Ceram. Soc. 78(6), 1606–1610 (1995)

    Article  CAS  Google Scholar 

  17. S. Baik, P.F. Becher, Effect of oxygen contamination on densification of TiB2. J. Am. Ceram. Soc. 70(8), 527–530 (1987)

    Article  CAS  Google Scholar 

  18. G. Zhao, C. Huang, H. Liu, B. Zou, H. Zhu, J. Wang, A study on in-situ synthesis of TiB2–SiC ceramic composites by reactive hot pressing. Ceram. Int. 40(1), 2305–2313 (2014)

    Article  CAS  Google Scholar 

  19. S.K. Bhaumik, C. Divakar, A.K. Singh, G.S. Upadhyaya, Synthesis and sintering of TiB2 and TiB2–TiC composite under high pressure. Mater. Sci. Eng. A 279(1), 275–281 (2000)

    Article  Google Scholar 

  20. N.A. Sabahi, M. Azadbeh, A.M. Shahedi, Effects of in-situ formed TiB whiskers on microstructure and mechanical properties of spark plasma sintered Ti–B4C and Ti–TiB2 composites. Sci. Iran 25, 762–771 (2018)

    Google Scholar 

  21. M. Akhlaghi, S.A. Tayebifard, E. Salahi, A.M. Shahedi, Spark plasma sintering of TiAl–Ti3AlC2 composite. Ceram. Int. 44(17), 21759–21764 (2018)

    Article  CAS  Google Scholar 

  22. Z.A. Munir, U. Anselmi-Tamburini, M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J. Mater. Sci. 41, 763–777 (2006)

    Article  CAS  Google Scholar 

  23. M. Suarez, A. Fernandez, J.L. Menendez, R. Torrecillas, J. Hennicke, R. Kirchner, U.H. Kessel, Challenges and opportunities for spark plasma sintering: A key technology for a new generation of materials. Sinter. Appl. 13, 319–342 (2013)

    Google Scholar 

  24. D.V. Dudina, B.B. Bokhonov, E.A. Olevsky, Fabrication of porous materials by spark plasma sintering: a review. Materials 12(3), 541 (2019)

    Article  CAS  Google Scholar 

  25. M. Abedi, S. Sovizi, A. Azarniya, D. Giuntini, M.E. Seraji, H.R.M. Hosseini, C. Amutha, S. Ramakrishna, A. Mukasyan, An analytical review on spark plasma sintering of metals and alloys: from processing window, phase transformation, and property perspective. Crit. Rev. Solid State Mater. Sci. (2022). https://doi.org/10.1080/10408436.2022.2049441

    Article  Google Scholar 

  26. A. Bellosi, M. Frédéric, S. Diletta, Fast densification of ultra-high-temperature ceramics by spark plasma sintering. Int. J. Appl. Ceram. Technol. 3(1), 32–40 (2006)

    Article  CAS  Google Scholar 

  27. Z. Zhang, X. Shen, F. Wang, S. Lee, L. Wang, Densification behavior and mechanical properties of the spark plasma sintered monolithic TiB2 ceramics. Mater. Sci. Eng. A 527(21), 5947–5951 (2010)

    Article  Google Scholar 

  28. M. ShahediAsl, Z. Ahmadi, S. Parvizi, Z. Balak, I. Farahbakhsh, Contribution of SiC particle size and spark plasma sintering conditions on grain growth and hardness of TiB2 composites. Ceram. Int. 43(16), 13924–1393 (2017)

    Article  CAS  Google Scholar 

  29. S. Tian, Z. Liao, W. Guo, Q. He, H. Wang, W. Wang, Effects of theTiB2–SiC volume ratio and spark plasma sintering temperature on the properties and microstructure of TiB2–BN–SiC composite ceramics. Crystals 12, 29 (2021)

    Article  Google Scholar 

  30. F. Ghafuri, M. Ahmadian, R. Emadi, M. Zakeri, Effects of SPS parameters on the densification and mechanical properties of TiB2-SiC composite. Ceram. Int. 45(8), 10550–10557 (2019)

    Article  CAS  Google Scholar 

  31. S. Oguntuyi, O. Johnson, M. Shongwe, Spark plasma sintering of ceramic matrix composite of ZrB2 and TiB2: microstructure, densification, and mechanical properties—a review. Met. Mater. Int. 27, 2146–2159 (2020)

    Article  Google Scholar 

  32. Z. Ahmadi, B. Nayebi, M. Shahedi Asl, I. Farahbakhsh, Z. Balak, Densification improvement of spark plasma sintered TiB2-based composites with micron-, submicron- and nano-sized SiC particulates. Ceram. Int. 44(10), 11431–11437 (2018)

    Article  CAS  Google Scholar 

  33. G. Raju, B. Basu, Densification, sintering reactions, and properties of titanium diboride with titanium disilicide as a sintering aid. J. Am. Ceram. Soc. 90(11), 3415–3423 (2007)

    Article  CAS  Google Scholar 

  34. M. Dashti Germi, Z. Hamidzadeh Mahaseni, Z. Ahmadi, M. Shahedi Asl, Phase evolution during spark plasma sintering of novel Si3N4-doped TiB2–SiC composite. Mater. Charact. 145, 225–232 (2018)

    Article  CAS  Google Scholar 

  35. L. Júnior, Í. Tomaz, M. Oliveira, L. Simão, S. Monteiro, Development and evaluation of TiB2–AlN ceramic composites sintered by spark plasma. Ceram. Int. 42(16), 18718–18723 (2016)

    Article  Google Scholar 

  36. Z. Li, H. Yu, D. Sun, Structural and microstructural effects produced by microwave sintering over La2O3 doped TiB2–Ni composites. Ceram. Int. 47(19), 26692–26703 (2021)

    Article  CAS  Google Scholar 

  37. M. Wang, W. Wang, J. Zhou, H. Chen, Z. Chang, The fabrication and characterization of a TiB2/Ni composite using spark plasma sintering. Trans. Indian Inst. Met. 71, 2349–2360 (2018)

    Article  CAS  Google Scholar 

  38. M. Vlasova, A. Bykov, M. Kakazey, P. Aguilar, I. Melnikov, I. Rosales, R. Tapia, Formation and properties of TiB2–Ni composite ceramics. Sci. Sinter. 48, 137–146 (2016)

    Article  CAS  Google Scholar 

  39. G. Zhao, J. Wang, Y. Deng, T. Yan, W. Liang, T. Li, L. Zhang, Q. Jia, Y. Wan, The study of the tribological properties of TiB2/Cr multilayered coatings over a wide temperature range. J. Mater. Res. Technol. 16, 290–301 (2022)

    Article  CAS  Google Scholar 

  40. Z. Zhang, X. Shen, F. Wang, S. Lee, Q. Fan, M. Cao, Low-temperature densification of TiB2 ceramic by the spark plasma sintering process with Ti as a sintering aid. Scr. Mater. 66(3), 167–170 (2012)

    Article  CAS  Google Scholar 

  41. C. Yang, H. Guo, D. Mo, S. Qu, X. Li, W. Zhang, L. Zhang, Bulk TiB2–Based ceramic composites with improved mechanical property using Fe–Ni–Ti–Al as a sintering aid. Mater. 7(10), 7105–7117 (2014)

    Article  Google Scholar 

  42. A. Horlock, D. McCartney, P. Shipway, J. Wood, Thermally sprayed Ni(Cr)–TiB2 coatings using powder produced by self-propagating high temperature synthesis: microstructure and abrasive wear behavior. Mater. Sci. Eng. A 336(1), 88–98 (2002)

    Article  Google Scholar 

  43. B. Lotfi, P. Shipway, D. McCartney, H. Edris, Abrasive wear behavior of Ni(Cr)–TiB2 coatings deposited by HVOF spraying of SHS-derived cermet powders. Wear 254(3), 340–349 (2003)

    Article  CAS  Google Scholar 

  44. N. Zhang, N. Zhang, X. Wei, Y. Zhang, D. Li, Microstructure and tribological performance of TiB2–NiCr composite coating deposited by APS. Coatings 7(12), 238 (2017)

    Article  Google Scholar 

  45. N. Zhang, N. Zhang, S. Guan, S. Li, G. Zhang, Y. Zhang, Composition versus wear behavior of air plasma sprayed NiCr–TiB2–ZrB2 composite coating. Coatings 8(8), 273 (2018)

    Article  Google Scholar 

  46. Z. Zhao, H. Li, T. Yang, H. Zhu, Tribological properties of HVOF-sprayed TiB2–NiCr coatings with agglomerated feedstocks. J. Therm. Spray. Technol. 27, 718–726 (2018)

    Article  CAS  Google Scholar 

  47. L. Nikzad, R. Licheri, T. Ebadzadeh, R. Orrù, G. Cao, Effect of ball milling on reactive spark plasma sintering of B4C–TiB2 composites. Ceram. Int. 38(8), 6469–6480 (2012)

    Article  CAS  Google Scholar 

  48. A. Jam, L. Nikzad, M. Razavi, TiC-based cermet prepared by high-energy ball-milling and reactive spark plasma sintering. Ceram. Int. 43(2), 2448–2455 (2017)

    Article  CAS  Google Scholar 

  49. A. Locci, R. Orrù, G. Cao, Z. Munir, Effect of ball milling on simultaneous spark plasma synthesis and densification of TiC–TiB2 composites. Mater. Sci. Eng. A 434(1), 23–29 (2006)

    Article  Google Scholar 

  50. M. Abdolahpour Salari, G. Merhan Muğlu, M. Rezaei, M. Saravana Kumar, H. Pulikkalparambil, S. Siengchin, In-situ synthesis of TiN and TiB2 compounds during reactive spark plasma sintering of BN–Ti composites. Sci. Sinter. 1(1), 48–53 (2021)

    Google Scholar 

  51. Y.H. Koh, S.Y. Lee, H.E. Kim, Oxidation behavior of titanium boride at elevated temperatures. J. Am. Ceram. Soc. 84(1), 239–241 (2001)

    Article  CAS  Google Scholar 

  52. T. Murthy, J. Sonber, C. Subramanian, R. Hubli, N. Krishnamurthy, A. Suri, Densification and oxidation behavior of a novel TiB2–MoSi2–CrB2 composite. Int. J. Refract. Metal Hard Mater. 36, 243–253 (2013)

    Article  CAS  Google Scholar 

  53. C. Wu, Y. Li, X. Cheng, S. Xie, Microstructural evolution and oxidation behavior of TiB2SiC B4C composite fabricated by reactive spark plasma sintering. J. Alloys Compd. 765, 158–165 (2018)

    Article  CAS  Google Scholar 

  54. Z. Ahmadi, Z. Hamidzadeh Mahaseni, M. Dashti Germi, M. Shahedi Asl, Microstructure of spark plasma sintered TiB2 and TiB2–AlN ceramics. Adv. Ceram. Prog. 5(1), 36–40 (2019)

    Google Scholar 

  55. S. Nekahi, F. Sadegh Moghanlou, M. Vajdi, Z. Ahmadi, A. Motallebzadeh, M. Shahedi Asl, Microstructural, thermal and mechanical characterization of TiB2–SiC composites doped with short carbon fibers. Int. J. Refract Met. Hard Mater. 82, 129–135 (2019)

    Article  CAS  Google Scholar 

  56. F. Sadegh Moghanlou, S. Nekahi, M. Vajdi, Z. Ahmadi, A. Motallebzadeh, A. Shokouhimehr, M. Shokouhimehr, S. Jafargholinejad, M. Shahedi Asl, Effects of graphite nano-flakes on thermal and microstructural properties of TiB2–SiC composites. Ceram. Int. 46(8), 11622–11630 (2020)

    Article  CAS  Google Scholar 

  57. T. Nguyen, Z. Hamidzadeh Mahaseni, M. Dashti Germi, S. Delbari, Q. Le, Z. Ahmadi, M. Shokouhimehr, M. Shahedi, A. Namini, Densification behavior and microstructure development in TiB2 ceramics doped with h-BN. Ceram. Int. 46(11), 18970–18975 (2020)

    Article  CAS  Google Scholar 

  58. D. King, W. Fahrenholtz, G. Hilmas, Microstructural effects on the mechanical properties of SiC-15 vol% TiB2 particulate-reinforced ceramic composites. J. Am. Ceram. Soc. 96(2), 577–583 (2012)

    Article  Google Scholar 

  59. S. Oguntuyi, M. Shongwe, L. Tshabalala, O. Johnson, N. Malatji, Effects of SiC on the microstructure, densification, hardness and wear performance of TiB2 ceramic matrix composite consolidated via spark plasma sintering. Arab. J. Sci. Eng. (2021). https://doi.org/10.1007/s13369-022-07026-7

    Article  Google Scholar 

  60. Z. Zhang, Y. Chen, L. Zuo, Y. Zhang, Y. Qi, K. Gao, The effect of volume fraction of WC particles on wear behavior of in-situ WC/Fe composites by spark plasma sintering. Int. J. Refract. Hard. Met. 69, 196–208 (2017)

    Article  CAS  Google Scholar 

  61. X. Wu, D. Wang, V. De Andrade, Y. Jiang, W. Wang, S. Wen, K. Gao, H. Huang, S. Chen, Z. Nie, Dry sliding wear of microalloyed Er-containing Al–10Sn–4Si–1Cu alloy. J. Mater. Res. Technol. 9(6), 14828–14840 (2020)

    Article  CAS  Google Scholar 

  62. H. Wang, H. Li, H. Zhu, F. Cheng, D. Wang, Z. Li, A comparative study of plasma sprayed TiB2–NiCr and Cr3C2–NiCr composite coatings. Mater. Lett. 153, 110–113 (2015)

    Article  CAS  Google Scholar 

  63. B. Nayebi, Z. Ahmadi, M. Shahedi Asl, S. Parvizi, M. Shokouhimehr, Influence of vanadium content on the characteristics of spark plasma sintered ZrB2–SiC–V composites. J. Alloys Compd. 805, 725–732 (2019)

    Article  CAS  Google Scholar 

  64. N. Radhika, M.L.V. Priyanka, Investigation of adhesive wear behavior of zirconia reinforced aluminium metal matrix composite. J. Eng. Sci. Technol. Rev. 12(6), 1685–1696 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Fakhrzad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 143 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakhrzad, M., Faramarzi, M., Navidpour, A.H. et al. Effects of spark plasma sintering temperature on the tribological performance of TiB2–NiCr composite. Journal of Materials Research 38, 2225–2238 (2023). https://doi.org/10.1557/s43578-023-00952-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-00952-8

Keywords

Navigation