Skip to main content

Advertisement

Log in

Recent progress on understanding the temperature-dependent irradiation resistance ranking among NiFe, NiCoCr, and NiCoFeCr alloys: A review

  • Invited Feature Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Systematic temperature-effects investigations on damage evolution in ion-irradiated Ni-based concentrated solid-solution alloys (CSAs) are pivotal to provide reliance on their use in nuclear applications. In search of the origin behind the temperature-dependent irradiation resistance ranking among equiatomic NiFe, NiCoCr, and NiCoFeCr alloys, we have compared previously experimental and theoretical published data involving ion irradiation experiments performed on these alloys with new ion channeling results from ion-irradiated NiCoFeCr at 500 K. Moreover, the current results are compared with independent theoretical calculations and relevant TEM results from the literature, which allow us to suggest that the lower migration energy of vacancies in NiCoCr, as compared with those in NiFe and NiCoFeCr, is the reason behind why NiCoCr is no longer outperforming NiFe under ion irradiation above 300 K.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. S.J. Zinkle, G.S. Was, Materials challenges in nuclear energy. Acta Mater. 61(3), 735 (2013)

    Article  CAS  Google Scholar 

  2. S.J. Zinkle, L.L. Snead, Designing radiation resistance in materials for fusion energy. Annu. Rev. Mater. Res. 44, 241 (2014)

    Article  CAS  Google Scholar 

  3. M.R. Gilbert, K. Arakawa, Z. Bergstrom, M.J. Caturla, S.L. Dudarev, F. Gao, A.M. Goryaeva, S.Y. Hu, X. Hu, R.J. Kurtz, A. Litnovsky, J. Marian, M.C. Marinica, E. Martinez, E.A. Marquis, D.R. Mason, B.N. Nguyen, P. Olsson, Y. Osetskiy, D. Senor, W. Setyawan, M.P. Short, T. Suzudo, J.R. Trelewicz, T. Tsuru, G.S. Was, B.D. Wirth, L. Yang, Y. Zhang, S.J. Zinkle, Perspectives on multiscale modelling and experiments to accelerate materials development for fusion. J. Nucl. Mater. 554, 153113 (2021)

    Article  CAS  Google Scholar 

  4. Y. Zhang, L. Wang, W.J. Weber, Charged particles: unique tools to study irradiation resistance of concentrated solid solution alloys. J. Mater. Sci. Technol. 140, 260 (2023)

    Article  Google Scholar 

  5. B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375–377, 213 (2004)

    Article  Google Scholar 

  6. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6(5), 299 (2004)

    Article  CAS  Google Scholar 

  7. B. Gludovatz, A. Hohenwarter, K.V.S. Thurston, H. Bei, Z. Wu, E.P. George, R.O. Ritchie, Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat. Commun. 7(1), 10602 (2016)

    Article  CAS  Google Scholar 

  8. E.P. George, D. Raabe, R.O. Ritchie, High-entropy alloys. Nat. Rev. Mater. 4, 515 (2019)

    Article  CAS  Google Scholar 

  9. Z. Wu, H. Bei, G.M. Pharr, E.P. George, Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater. 81, 428 (2014)

    Article  CAS  Google Scholar 

  10. Y. Shi, B. Yang, P.K. Liaw, Corrosion-resistant high-entropy alloys: a review. Metals 7(2), 43 (2017)

    Article  Google Scholar 

  11. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications. Science 345(6201), 1153 (2014)

    Article  CAS  Google Scholar 

  12. M.-H. Tsai, J.-W. Yeh, High-entropy alloys: a critical review. Mater. Res. Lett. 2(3), 107 (2014)

    Article  Google Scholar 

  13. D.B.B. Miracle, O.N.N. Senkov, A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448 (2017)

    Article  CAS  Google Scholar 

  14. Y. Zhang, G.M. Stocks, K. Jin, C. Lu, H. Bei, B.C. Sales, L. Wang, L.K. Béland, R.E. Stoller, G.D. Samolyuk, M. Caro, A. Caro, W.J. Weber, Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys. Nat. Commun. 6(1), 8736 (2015)

    Article  CAS  Google Scholar 

  15. Y. Zhang, T. Egami, W.J. Weber, Dissipation of radiation energy in concentrated solid-solution alloys: unique defect properties and microstructural evolution. MRS Bull. 44(10), 798 (2019)

    Article  Google Scholar 

  16. E.J. Pickering, A.W. Carruthers, P.J. Barron, S.C. Middleburgh, D.E.J. Armstrong, A.S. Gandy, High-entropy alloys for advanced nuclear applications. Entropy 23(1), 98 (2021)

    Article  CAS  Google Scholar 

  17. Z. Zhang, D.E.J. Armstrong, P.S. Grant, The effects of irradiation on CrMnFeCoNi high-entropy alloy and its derivatives. Prog. Mater. Sci. 123, 100807 (2022)

    Article  CAS  Google Scholar 

  18. Y. Zhang, Y.N. Osetsky, W.J. Weber, Tunable chemical disorder in concentrated alloys: defect physics and radiation performance. Chem. Rev. 122(1), 789 (2022)

    Article  CAS  Google Scholar 

  19. Y. Zhang, C. Silva, T.G. Lach, M.A. Tunes, Y. Zhou, L. Nuckols, W.L. Boldman, P.D. Rack, S.E. Donnelly, L. Jiang, L. Wang, W.J. Weber, Role of electronic energy loss on defect production and interface stability: comparison between ceramic materials and high-entropy alloys. Curr. Opin. Solid State Mater. Sci. 26(4), 101001 (2022)

    Article  CAS  Google Scholar 

  20. M. Moschetti, P. Burr, E. Obbard, J.J. Kruzic, P. Hosemann, B. Gludovatz, Design considerations for high entropy alloys in advanced nuclear applications. J. Nucl. Mater. 567, 153814 (2022)

    Article  CAS  Google Scholar 

  21. Y. Zhang, W.J. Weber, Ion irradiation and modification: the role of coupled electronic and nuclear energy dissipation and subsequent nonequilibrium processes in materials. Appl. Phys. Rev. 7(4), 041307 (2020)

    Article  CAS  Google Scholar 

  22. Y. Zhang, Reassembled nanoprecipitates resisting radiation. Nat. Mater. 2022, 1 (2022)

  23. B. Cantor, Multicomponent and high entropy alloys. Entropy 16(9), 4749–4768 (2014)

    Article  Google Scholar 

  24. Y. Zhang, K. Jin, H. Xue, C. Lu, R.J. Olsen, L.K. Beland, M.W. Ullah, S. Zhao, H. Bei, D.S. Aidhy, G.D. Samolyuk, L. Wang, M. Caro, A. Caro, G.M. Stocks, B.C. Larson, I.M. Robertson, A.A. Correa, W.J. Weber, Influence of chemical disorder on energy dissipation and defect evolution in advanced alloys. J. Mater. Res. 31(16), 2363 (2016)

    Article  Google Scholar 

  25. Y. Zhang, S. Zhao, W.J. Weber, K. Nordlund, F. Granberg, F. Djurabekova, Atomic-level heterogeneity and defect dynamics in concentrated solid-solution alloys. Curr. Opin. Solid State Mater. Sci. 21(5), 221 (2017)

    Article  CAS  Google Scholar 

  26. R. Zhang, S. Zhao, J. Ding, Y. Chong, T. Jia, C. Ophus, M. Asta, R.O. Ritchie, A.M. Minor, Short-range order and its impact on the CrCoNi medium-entropy alloy. Nature 581(7808), 283 (2020)

    Article  CAS  Google Scholar 

  27. S. Mu, Z. Pei, X. Liu, G.M. Stocks, Electronic transport and phonon properties of maximally disordered alloys: from binaries to high-entropy alloys. J. Mater. Res. 33(19), 2857 (2018)

    Article  CAS  Google Scholar 

  28. W.R. Jian, Z. Xie, S. Xu, Y. Su, X. Yao, I.J. Beyerlein, Effects of lattice distortion and chemical short-range order on the mechanisms of deformation in medium entropy alloy CoCrNi. Acta Mater. 199, 352 (2020)

    Article  CAS  Google Scholar 

  29. E. Lu, J. Zhao, I. Makkonen, K. Mizohata, Z. Li, M. Hua, F. Djurabekova, F. Tuomisto, Enhancement of vacancy diffusion by C and N interstitials in the equiatomic FeMnNiCoCr high entropy alloy. Acta Mater. 215, 117093 (2021)

    Article  CAS  Google Scholar 

  30. E. Wendler, O. Bilani, K. Gärtner, W. Wesch, M. Hayes, F.D. Auret, K. Lorenz, E. Alves, Radiation damage in ZnO ion implanted at 15 K. Nucl. Instrum. Methods Phys. Res. Sect. B 267(16), 2708 (2009)

    Article  CAS  Google Scholar 

  31. Y. Haddad, L. Delauche, A. Gentils, F. Garrido, In situ characterization of irradiation-induced microstructural evolution in urania single crystals at 773 K. Nucl. Instrum. Methods Phys. Res. Sect. B 435, 25 (2018)

    Article  CAS  Google Scholar 

  32. K. Yasuda, M. Nastasi, K.E. Sickafus, C.J. Maggiore, N. Yu, Ion beam channeling study on the damage accumulation in yttria-stabilized cubic zirconia. Nucl. Instrum. Methods Phys. Res. Sect. B 136–138, 499 (1998)

    Article  Google Scholar 

  33. A. Turos, P. Jóźwik, M. Wójcik, J. Gaca, R. Ratajczak, A. Stonert, Mechanism of damage buildup in ion bombarded ZnO. Acta Mater. 134, 249 (2017)

    Article  CAS  Google Scholar 

  34. K. Jin, G. Velisa, H. Xue, T. Yang, H. Bei, W.J. Weber, L. Wang, Y. Zhang, Channeling analysis in studying ion irradiation damage in materials containing various types of defects. J. Nucl. Mater. 517, 9 (2019)

    Article  CAS  Google Scholar 

  35. X. Jin, A. Boulle, A. Chartier, J.P. Crocombette, A. Debelle, Analysis of strain and disordering kinetics based on combined RBS-channeling and X-ray diffraction atomic-scale modelling. Acta Mater. 201, 63 (2020)

    Article  CAS  Google Scholar 

  36. S. Zhao, G. Velisa, H. Xue, H. Bei, W.J. Weber, Y. Zhang, Suppression of vacancy cluster growth in concentrated solid solution alloys. Acta Mater. 125, 231 (2017)

    Article  CAS  Google Scholar 

  37. M.R. He, S. Wang, S. Shi, K. Jin, H. Bei, K. Yasuda, S. Matsumura, K. Higashida, I.M. Robertson, Mechanisms of radiation-induced segregation in CrFeCoNi-based single-phase concentrated solid solution alloys. Acta Mater. 126, 182 (2017)

    Article  CAS  Google Scholar 

  38. C. Lu, T. Yang, K. Jin, N. Gao, P. Xiu, Y. Zhang, F. Gao, H. Bei, W.J. Weber, K. Sun, Y. Dong, L. Wang, Radiation-induced segregation on defect clusters in single-phase concentrated solid-solution alloys. Acta Mater. 127, 98 (2017)

    Article  CAS  Google Scholar 

  39. F. Tuomisto, I. Makkonen, J. Heikinheimo, F. Granberg, F. Djurabekova, K. Nordlund, G. Velisa, H. Bei, H. Xue, W.J. Weber, Y. Zhang, Segregation of Ni at early stages of radiation damage in NiCoFeCr solid solution alloys. Acta Mater. 196, 44 (2020)

    Article  CAS  Google Scholar 

  40. K. Jin, C. Lu, L.M. Wang, J. Qu, W.J. Weber, Y. Zhang, H. Bei, Effects of compositional complexity on the ion-irradiation induced swelling and hardening in Ni-containing equiatomic alloys. Scr. Mater. 119(July), 65 (2016)

    Article  CAS  Google Scholar 

  41. C. Lu, L. Niu, N. Chen, K. Jin, T. Yang, P. Xiu, Y. Zhang, F. Gao, H. Bei, S. Shi, M.R. He, I.M. Robertson, W.J. Weber, L. Wang, Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys. Nat. Commun. 7, 1 (2016)

    Article  Google Scholar 

  42. T. Yang, C. Lu, K. Jin, M.L. Crespillo, Y. Zhang, H. Bei, L. Wang, The effect of injected interstitials on void formation in self-ion irradiated nickel containing concentrated solid solution alloys. J. Nucl. Mater. 488, 328 (2017)

    Article  CAS  Google Scholar 

  43. Y. Zhang, X. Wang, Y.N. Osetsky, Y. Tong, R. Harrison, S.E. Donnelly, D. Chen, Y. Wang, H. Bei, B.C. Sales, K.L. More, P. Xiu, L. Wang, W.J. Weber: Effects of 3D electron configurations on helium bubble formation and void swelling in concentrated solid-solution alloys. Acta Mater. 181, 519–529 (2019)

  44. Y.N. Osetsky, L.K. Béland, A.V. Barashev, Y. Zhang, On the existence and origin of sluggish diffusion in chemically disordered concentrated alloys. Curr. Opin. Solid State Mater. Sci. 22(3), 65 (2018)

    Article  CAS  Google Scholar 

  45. A. Barashev, Y. Osetsky, H. Bei, C. Lu, L. Wang, Y. Zhang, Chemically-biased diffusion and segregation impede void growth in irradiated Ni–Fe alloys. Curr. Opin. Solid State Mater. Sci. 23(2), 92 (2019)

    Article  CAS  Google Scholar 

  46. Q. Fang, J. Peng, Y. Chen, L. Li, H. Feng, J. Li, C. Jiang, P.K. Liaw, Hardening behaviour in the irradiated high entropy alloy. Mech. Mater. 155, 103744 (2021)

    Article  Google Scholar 

  47. S.Q. Xia, X. Yang, T.F. Yang, S. Liu, Y. Zhang, Irradiation resistance in AlxCoCrFeNi high entropy alloys. JOM 67(10), 2340 (2015)

    Article  CAS  Google Scholar 

  48. S. Chang, K.K. Tseng, T.Y. Yang, D.S. Chao, J.W. Yeh, J.H. Liang, Irradiation-induced swelling and hardening in HfNbTaTiZr refractory high-entropy alloy. Mater. Lett. 272, 127832 (2020)

    Article  CAS  Google Scholar 

  49. N.A.P.K. Kumar, C. Li, K.J. Leonard, H. Bei, S.J. Zinkle, Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation. Acta Mater. 113, 230 (2016)

    Article  CAS  Google Scholar 

  50. E. Lu, I. Makkonen, K. Mizohata, Z. Li, J. Räisänen, F. Tuomisto, Effect of interstitial carbon on the evolution of early-stage irradiation damage in equi-atomic FeMnNiCoCr high-entropy alloys. J. Appl. Phys. 127(2), 025103 (2020)

    Article  CAS  Google Scholar 

  51. M.A. Cusentino, M.A. Wood, R. Dingreville, Compositional and structural origins of radiation damage mitigation in high-entropy alloys. J. Appl. Phys. 128(12), 125904 (2020)

    Article  CAS  Google Scholar 

  52. W.Y. Chen, J.D. Poplawsky, Y. Chen, W. Guo, J.W. Yeh, Irradiation-induced segregation at dislocation loops in CoCrFeMnNi high entropy alloy. Materialia 14, 100951 (2020)

    Article  CAS  Google Scholar 

  53. P.P. Cao, H. Wang, J.Y. He, C. Xu, S.H. Jiang, J.L. Du, X.Z. Cao, E.G. Fu, Z.P. Lu, Effects of nanosized precipitates on irradiation behavior of CoCrFeNi high entropy alloys. J. Alloys Compd. 859, 158291 (2021)

    Article  CAS  Google Scholar 

  54. J. Kim, J.W. Lim, J.K. Kim, D.H. Kim, E.S. Park, H.J. Chang, Suppressed radiation-induced dynamic recrystallization in CrFeCoNiCu high-entropy alloy. Scr. Mater. 190, 158 (2021)

    Article  CAS  Google Scholar 

  55. M. Aizenshtein, Z. Ungarish, K.B.B. Woller, S. Hayun, M.P.P. Short, Mechanical and microstructural response of the Al0.5CoCrFeNi high entropy alloy to Si and Ni ion irradiation. Nucl. Mater. Energy 25, 100813 (2020)

    Article  Google Scholar 

  56. Y. Lin, T. Yang, L. Lang, C. Shan, H. Deng, W. Hu, F. Gao, Enhanced radiation tolerance of the Ni–Co–Cr–Fe high-entropy alloy as revealed from primary damage. Acta Mater. 196, 133 (2020)

    Article  CAS  Google Scholar 

  57. X.X. Wang, L.L. Niu, S. Wang, Interpreting radiation-induced segregation and enhanced radiation tolerance of single-phase concentrated solid-solution alloys from first principles. Mater. Lett. 202, 120 (2017)

    Article  CAS  Google Scholar 

  58. Y. Li, R. Li, Q. Peng, S. Ogata, Reduction of dislocation, mean free path, and migration barriers using high entropy alloy: insights from the atomistic study of irradiation damage of CoNiCrFeMn. Nanotechnology 31(42), 8 (2020)

    Article  Google Scholar 

  59. S.C. Middleburgh, D.M. King, G.R. Lumpkin, M. Cortie, L. Edwards, Segregation and migration of species in the CrCoFeNi high entropy alloy. J. Alloys Compd. 599, 179 (2014)

    Article  CAS  Google Scholar 

  60. T. Yang, S. Xia, W. Guo, R. Hu, J.D. Poplawsky, G. Sha, Y. Fang, Z. Yan, C. Wang, C. Li, Y. Zhang, S.J. Zinkle, Y. Wang, Effects of temperature on the irradiation responses of Al0.1CoCrFeNi high entropy alloy. Scr. Mater. 144, 31 (2018)

    Article  CAS  Google Scholar 

  61. S. Xia, M.C. Gao, T. Yang, P.K. Liaw, Y. Zhang, Phase stability and microstructures of high entropy alloys ion irradiated to high doses. J. Nucl. Mater. 480, 100 (2016)

    Article  CAS  Google Scholar 

  62. C.M. Barr, J.E. Nathaniel, K.A. Unocic, J. Liu, Y. Zhang, Y. Wang, M.L. Taheri, Exploring radiation induced segregation mechanisms at grain boundaries in equiatomic CoCrFeNiMn high entropy alloy under heavy ion irradiation. Scr. Mater. 156, 80 (2018)

    Article  CAS  Google Scholar 

  63. C. Lu, T. Yang, K. Jin, G. Velisa, P. Xiu, M. Song, Q. Peng, F. Gao, Y. Zhang, H. Bei, W.J. Weber, L. Wang, Enhanced void swelling in NiCoFeCrPd high-entropy alloy by indentation-induced dislocations. Mater. Res. Lett. 6(10), 584 (2018)

    Article  CAS  Google Scholar 

  64. T. Yang, W. Guo, J.D. Poplawsky, D. Li, L. Wang, Y. Li, W. Hu, M.L. Crespillo, Z. Yan, Y. Zhang, Y. Wang, S.J. Zinkle, Structural damage and phase stability of Al0.3CoCrFeNi high entropy alloy under high temperature ion irradiation. Acta Mater. 188, 1 (2020)

    Article  CAS  Google Scholar 

  65. W.Y. Chen, M.A. Kirk, N. Hashimoto, J.W. Yeh, X. Liu, Y. Chen, Irradiation effects on Al0.3CoCrFeNi and CoCrMnFeNi high-entropy alloys, and 316H stainless steel at 500 °C. J. Nucl. Mater. 539, 152324 (2020)

    Article  CAS  Google Scholar 

  66. X. Wang, C. Hatzoglou, B. Sneed, Z. Fan, W. Guo, K. Jin, D. Chen, H. Bei, Y. Wang, W.J. Weber, Y. Zhang, B. Gault, K.L. More, F. Vurpillot, J.D. Poplawsky, Interpreting nanovoids in atom probe tomography data for accurate local compositional measurements. Nat. Commun. 11(1), 1 (2020)

    Google Scholar 

  67. S. Abhaya, R. Rajaraman, R.M. Sarguna, P.K. Parida, C. David, G. Amarendra, Defect microstructure in high temperature Ni+ implanted FeCrCoNi—a positron beam study. J. Alloys Compd. 806, 780 (2019)

    Article  CAS  Google Scholar 

  68. S. Abhaya, R. Rajaraman, S. Kalavathi, C. David, B.K. Panigrahi, G. Amarendra, Effect of dose and post irradiation annealing in Ni implanted high entropy alloy FeCrCoNi using slow positron beam. J. Alloys Compd. 669, 117 (2016)

    Article  CAS  Google Scholar 

  69. T.R. Allen, J.T. Busby, G.S. Was, E.A. Kenik, On the mechanism of radiation-induced segregation in austenitic Fe–Cr–Ni alloys. J. Nucl. Mater. 255(1), 44 (1998)

    Article  CAS  Google Scholar 

  70. T. Takeyama, H. Takahashi, S. Ohnuki, Radiation-induced segregation in austenitic and ferritic steels. Bull. Fac. Eng. Hokkaido Univ. 121, 85–99 (1984)

    Google Scholar 

  71. M. Vaidya, K.G. Pradeep, B.S. Murty, G. Wilde, S.V. Divinski, Bulk tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys. Acta Mater. 146, 211 (2018)

    Article  CAS  Google Scholar 

  72. G. Velişa, Z. Fan, M.L. Crespillo, H. Bei, W.J. Weber, Y. Zhang, Temperature effects on damage evolution in ion-irradiated NiCoCr concentrated solid-solution alloy. J. Alloys Compd. 832, 154918 (2020)

    Article  Google Scholar 

  73. Z. Fan, G. Velisa, K. Jin, M.L. Crespillo, H. Bei, W.J. Weber, Y. Zhang, Temperature-dependent defect accumulation and evolution in Ni-irradiated NiFe concentrated solid-solution alloy. J. Nucl. Mater. 519, 1 (2019)

    Article  CAS  Google Scholar 

  74. E. Levo, F. Granberg, K. Nordlund, F. Djurabekova, Temperature effect on irradiation damage in equiatomic multi-component alloys. Comput. Mater. Sci. 197, 110571 (2021)

    Article  CAS  Google Scholar 

  75. G. Velişa, K. Jin, Z. Fan, C. Lu, H. Bei, W.J. Weber, L. Wang, Y. Zhang, Multi-axial and multi-energy channeling study of disorder evolution in ion-irradiated nickel. J. Nucl. Mater. 525, 92 (2019)

    Article  Google Scholar 

  76. Y. Zhou, G. Velişa, S. San, M.L. Crespillo, Z. Fan, H. Bei, W.J. Weber, P. Xiu, L. Wang, F. Tuomisto, W.-Y. Ching, Y. Zhang, Role of chemical disorder on radiation-induced defect production and damage evolution in NiFeCoCr. J. Nucl. Mater. 565, 153689 (2022)

    Article  CAS  Google Scholar 

  77. S. Shi, M.-R. He, K. Jin, H. Bei, I.M. Robertson, Evolution of ion damage at 773 K in Ni-containing concentrated solid-solution alloys. J. Nucl. Mater. 501, 132 (2018)

    Article  CAS  Google Scholar 

  78. C. Lu, K. Jin, L.K. Béland, F. Zhang, T. Yang, L. Qiao, Y. Zhang, H. Bei, H.M. Christen, R.E. Stoller, L. Wang, Direct observation of defect range and evolution in ion-irradiated single crystalline Ni and Ni binary alloys. Sci. Rep. 6(1), 19994 (2016)

    Article  CAS  Google Scholar 

  79. W. Wesch, E. Wendler, Ion Beam Modification of Solids: Ion-Solid Interaction and Radiation Damage (Springer Internat Publishing, 2016)

  80. F. Tuomisto, I. Makkonen, Defect identification in semiconductors with positron annihilation: experiment and theory. Rev. Mod. Phys. 85(4), 1583 (2013)

    Article  CAS  Google Scholar 

  81. K. Jin, B.C. Sales, G.M. Stocks, G.D. Samolyuk, M. Daene, W.J. Weber, Y. Zhang, H. Bei, Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity. Sci. Rep. 6, 20159 (2016)

  82. F. Granberg, K. Nordlund, M.W. Ullah, K. Jin, C. Lu, H. Bei, L.M. Wang, F. Djurabekova, W.J. Weber, Y. Zhang, Mechanism of radiation damage reduction in equiatomic multicomponent single phase alloys. Phys. Rev. Lett. 116(13), 135504 (2016)

    Article  CAS  Google Scholar 

  83. E. Levo, F. Granberg, C. Fridlund, K. Nordlund, F. Djurabekova, Radiation damage buildup and dislocation evolution in Ni and equiatomic multicomponent Ni-based alloys. J. Nucl. Mater. 490, 323 (2017)

    Article  CAS  Google Scholar 

  84. F. Granberg, F. Djurabekova, E. Levo, K. Nordlund, Damage buildup and edge dislocation mobility in equiatomic multicomponent alloys. Nucl. Instrum. Methods Phys. Res. Sect. B 393, 114 (2017)

    Article  CAS  Google Scholar 

  85. M.W. Ullah, Y. Zhang, N. Sellami, A. Debelle, H. Bei, W.J. Weber, Evolution of irradiation-induced strain in an equiatomic NiFe alloy. Scr. Mater. 140, 35 (2017)

    Article  CAS  Google Scholar 

  86. D.S. Aidhy, C. Lu, K. Jin, H. Bei, Y. Zhang, L. Wang, W.J. Weber, Point defect evolution in Ni, NiFe and NiCr alloys from atomistic simulations and irradiation experiments. Acta Mater. 99, 69 (2015)

    Article  CAS  Google Scholar 

  87. D.S. Aidhy, P.C. Millett, T. Desai, D. Wolf, S.R. Phillpot, Kinetically evolving irradiation-induced point defect clusters in UO2 by molecular dynamics simulation. Phys. Rev. B 80, 104107 (2009)

    Article  Google Scholar 

  88. D.S. Aidhy, P.C. Millett, D. Wolf, S.R. Phillpot, H. Huang, Kinetically driven point-defect clustering in irradiated MgO by molecular-dynamics simulation. Scr. Mater. 60(8), 691 (2009)

    Article  CAS  Google Scholar 

  89. S. Abhaya, R. Rajaraman, S. Kalavathi, G. Amarendra, Positron annihilation studies on FeCrCoNi high entropy alloy. J. Alloys Compd. 620, 277 (2015)

    Article  CAS  Google Scholar 

  90. R.J. Olsen, K. Jin, C. Lu, L.K. Beland, L. Wang, H. Bei, E.D. Specht, B.C. Larson, Investigation of defect clusters in ion-irradiated Ni and NiCo using diffuse X-ray scattering and electron microscopy. J. Nucl. Mater. 469, 153 (2016)

    Article  CAS  Google Scholar 

  91. S. Moll, L. Thomé, G. Sattonnay, A. Debelle, F. Garrido, L. Vincent, J. Jagielski, Multistep damage evolution process in cubic zirconia irradiated with MeV ions. J. Appl. Phys. 106(7), 073509 (2009)

    Article  Google Scholar 

  92. S. Moll, Y. Zhang, A. Debelle, L. Thomé, J.P. Crocombette, Z. Zihua, J. Jagielski, W.J. Weber, Damage processes in MgO irradiated with medium-energy heavy ions. Acta Mater. 88, 314 (2015)

    Article  CAS  Google Scholar 

  93. S. Zhao, Y. Osetsky, Y. Zhang, Preferential diffusion in concentrated solid solution alloys: NiFe, NiCo and NiCoCr. Acta Mater. 128, 391 (2017)

    Article  CAS  Google Scholar 

  94. Y. Zhang, M.L. Crespillo, H. Xue, K. Jin, C.H. Chen, C.L. Fontana, J.T. Graham, W.J. Weber, New ion beam materials laboratory for materials modification and irradiation effects research. Nucl. Instrum. Methods Phys. Res. Sect. B 338, 19 (2014)

    Article  CAS  Google Scholar 

  95. M.L. Crespillo, J.T. Graham, Y. Zhang, W.J. Weber, Temperature measurements during high flux ion beam irradiations. Rev. Sci. Instrum. 87(2), 024902 (2016)

    Article  CAS  Google Scholar 

  96. Y. Zhang, J. Lian, Z. Zhu, W.D. Bennett, L.V. Saraf, J.L. Rausch, C.A. Hendricks, R.C. Ewing, W.J. Weber, Response of strontium titanate to ion and electron irradiation. J. Nucl. Mater. 389(2), 303 (2009)

    Article  CAS  Google Scholar 

  97. G. Velişa, E. Wendler, S. Zhao, K. Jin, H. Bei, W.J. Weber, Y. Zhang, Delayed damage accumulation by athermal suppression of defect production in concentrated solid solution alloys. Mater. Res. Lett. 6(2), 136 (2018)

    Article  Google Scholar 

  98. S. Zhang, K. Nordlund, F. Djurabekova, Y. Zhang, G. Velisa, T.S. Wang, Simulation of Rutherford backscattering spectrometry from arbitrary atom structures. Phys. Rev. E 94(4), 1 (2016)

    Article  Google Scholar 

  99. C. Mieszczynski, R. Ratajczak, J. Jagielski, G. Velişa, H. Bei, B.C. Sales, E. Wendler, W.J. Weber, Y. Zhang, Defect evolution in Ni and solid-solution alloys of NiFe and NiFeCoCr under ion irradiation at 16 and 300 K. J. Nucl. Mater. 534, 152138 (2020)

    Article  CAS  Google Scholar 

  100. W.J. Weber, Y. Zhang, Predicting damage production in monoatomic and multi-elemental targets using stopping and range of ions in matter code: challenges and recommendations. Curr. Opin. Solid State Mater. Sci. 23(4), 100757 (2019)

    Article  CAS  Google Scholar 

  101. J.F. Ziegler, J.P. Biersack, Treatise Heavy-Ion Sci (Springer US, Boston, 1985), pp.93–129

    Book  Google Scholar 

  102. S. Zhang, K. Nordlund, F. Djurabekova, F. Granberg, Y. Zhang, T.S. Wang, Radiation damage buildup by athermal defect reactions in nickel and concentrated nickel alloys. Mater. Res. Lett. 5(6), 433–439 (2017)

    Article  CAS  Google Scholar 

  103. K. Nordlund, M. Ghaly, R.S. Averback, M. Caturla, T.D. de la Rubia, J. Tarus, Defect production in collision cascades in elemental semiconductors and fcc metals. Phys. Rev. B 57(13), 7556 (1998)

    Article  CAS  Google Scholar 

  104. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 18(1), 015012 (2009)

    Article  Google Scholar 

  105. A. Stukowski, V.V. Bulatov, A. Arsenlis, Automated identification and indexing of dislocations in crystal interfaces. Model. Simul. Mater. Sci. Eng. 20(8), 085007 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported as part of the Energy Dissipation to Defect Evolution (EDDE), an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences under Contract Number DE-AC05-00OR22725. The contribution of G. Velişa to this work, after returning to IFIN-HH, was supported under Research Programme Partnership in Priority Areas PNII MEN-UEFISCDI, contract PN 23210201. This work has been partially carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200—EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them. Computer time granted by the IT Center for Science—CSC—Finland and the Finnish Grid and Cloud Infrastructure (persistent identifier urn:nbn:fi:research-infras-2016072533) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. Velişa or Y. Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velişa, G., Granberg, F., Levo, E. et al. Recent progress on understanding the temperature-dependent irradiation resistance ranking among NiFe, NiCoCr, and NiCoFeCr alloys: A review. Journal of Materials Research 38, 1510–1526 (2023). https://doi.org/10.1557/s43578-023-00922-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-00922-0

Keywords

Navigation