Skip to main content
Log in

Sub-micron patterning of metal oxide surfaces via microcontact printing and microtransfer molding of amphiphilic molecules and antifouling application

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Low cost, potentially scalable soft lithography approaches are employed here to generate nano and microscale line patterns of n-octadecylphosphonic acid and n-octadecyltriethoxysilane with thicknesses ranging from 2 up to 150 nm depending on conditions and substrates used. Elastomer stamps generated from commercial optical media (DVD-R and CD-R) are used to print the amphiphile n-octadecylphosphonic acid (ODPA) on mica, Si(111), and aluminum AA6063, while n-octadecyltriethoxysilane (OTES) is printed on AA6063. The thicker ODPA pattern generated via microtransfer molding is robust enough to act as resist for wet etch on aluminum alloy at its resolution limits, allowing a more permanent pattern directly on the substrate (resulting in a pitch of 1600 nm and crest full width half maximum of 820 nm). Upon surface modification with a non-polar terminated monolayer (post-patterning), the water contact angle is shown to increase relative to unpatterned hydrophobic control, resulting in significantly less bacteria adhesion.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. A. Perl, D. Reinhoudt, J. Huskens, Adv. Mater. 21, 2257 (2009). https://doi.org/10.1002/adma.200801864

    Article  CAS  Google Scholar 

  2. A. Quist, E. Pavlovic, S. Oscarsson, Anal. Bioanal. Chem. 381, 591 (2005). https://doi.org/10.1007/s00216-004-2847-z

    Article  CAS  Google Scholar 

  3. Y. Xia, G. Whitesides, Angew. Chem. Int. Ed. 37, 550 (1998). https://doi.org/10.1002/(SICI)1521-3773(19980316)37:5%3c550::AID-ANIE550%3e3.0.CO;2-G

    Article  CAS  Google Scholar 

  4. L. Chi, Nanotechnology (Wiley-VCH, Weinheim, 2010)

    Google Scholar 

  5. L. Goetting, T. Deng, G. Whitesides, Langmuir 15, 1182 (1999). https://doi.org/10.1021/la981094h

    Article  CAS  Google Scholar 

  6. W. Bao, D. Liang, M. Zhang, Y. Jiao, L. Wang, L. Cai, J. Li, Prog. Nat. Sci. Mater. Int. 27, 669 (2017). https://doi.org/10.1016/j.pnsc.2017.11.004

    Article  CAS  Google Scholar 

  7. M. Jalali, A. White, J. Marti, J. Sheng, Sci. Rep. 8, 7612 (2018). https://doi.org/10.1038/s41598-018-25812-y

    Article  CAS  Google Scholar 

  8. Y.F. Dufrene, A. Persat, Nat. Rev. Microbiol. 18, 227 (2020). https://doi.org/10.1038/s41579-019-0314-2

    Article  CAS  Google Scholar 

  9. M. Cavallini, M. Murgia, F. Biscarini, Mater. Sci. Eng., C 19, 275 (2002). https://doi.org/10.1016/S0928-4931(01)00398-8

    Article  Google Scholar 

  10. L. Sun, J. Guo, H. Chen, D. Zhang, L. Shang, B. Zhang, Y. Zhao, Adv. Sci. 8, 2100126 (2021). https://doi.org/10.1002/advs.202100126

    Article  CAS  Google Scholar 

  11. R.N. Wenzel, Ind. Eng. Chem. 28, 988 (1936). https://doi.org/10.1021/ie50320a024

    Article  CAS  Google Scholar 

  12. A.B.D. Cassie, Discuss. Faraday Soc. 3, 11 (1948). https://doi.org/10.1039/DF9480300011

    Article  Google Scholar 

  13. L.C. Xu, C.A. Siedlecki, Biomed. Mater 9, 035003 (2014). https://doi.org/10.1088/1748-6041/9/3/035003

    Article  CAS  Google Scholar 

  14. G. Watson, D. Green, L. Schwarzkopf, X. Li, B. Cribb, S. Myhra, J. Watson, Acta Biomater. 21, 109 (2015). https://doi.org/10.1016/j.actbio.2015.03.007

    Article  CAS  Google Scholar 

  15. S. Rigo, C. Cai, G. Gunkel-Grabole, L. Maurizi, X. Zhang, J. Xu, C.G. Palivan, Advanced Science 5, 1700892 (2018). https://doi.org/10.1002/advs.201700892

    Article  CAS  Google Scholar 

  16. K. Page, M. Wilson, I. Parkin, J. Mater. Chem. 19, 3819 (2009). https://doi.org/10.1039/B818698G

    Article  CAS  Google Scholar 

  17. D. Perera-Costa, J. Bruque, M. González-Martín, A. Gómez-García, V. Vadillo-Rodríguez, Langmuir 30, 4633 (2014). https://doi.org/10.1021/la5001057

    Article  CAS  Google Scholar 

  18. K. Rumbaugh, K. Sauer, Nat. Rev. Microbiol. 18, 571 (2020). https://doi.org/10.1038/s41579-020-0385-0

    Article  CAS  Google Scholar 

  19. F. Hizal, N. Rungraeng, S. Jun, C. Choi, The 9th IEEE international conference nano/micro engineered and molecular systems (IEEE, 2014)

    Google Scholar 

  20. C. Díaz, P. Schilardi, R. Salvarezza, M. Fernández Lorenzo de Mele, Langmuir 23, 11206 (2007)

    Article  Google Scholar 

  21. B.R.A. Neves, M.E. Salmon, P.E. Russell, E.B. Troughton, Langmuir 17, 8193 (2001). https://doi.org/10.1021/la010909a

    Article  CAS  Google Scholar 

  22. C. Bauwens, R. Peerani, S. Niebruegge, K. Woodhouse, E. Kumacheva, M. Husain, P. Zandstra, Stem Cells 26, 2300–2310 (2008). https://doi.org/10.1634/stemcells.2008-0183

    Article  Google Scholar 

  23. S. Qiu, J. Ji, W. Sun, J. Pei, J. He, Y. Li, J. Li, G. Wang, Smart Mater. Med. 2, 66–73 (2021). https://doi.org/10.1016/j.smaim.2020.12.002

    Article  CAS  Google Scholar 

  24. K.M. Knesting, P.J. Hotchkiss, B.A. MacLead, S.R. Marder, D.S. Ginger, Adv. Mater. 24, 642 (2012). https://doi.org/10.1002/adma.201102321

    Article  CAS  Google Scholar 

  25. M. Lingenfelder, A. Bejarano, M. van der Meijden, K. Kellogg, D. Amabilio, Chem Eur. J. 20, 10466–10474 (2014). https://doi.org/10.1002/chem.201303062

    Article  CAS  Google Scholar 

  26. P. Van Zant, Microchip fabrication: a practical guide to semiconductor processing, 6th edn. (McGraw-Hill, New York, 2014)

    Google Scholar 

  27. A. Marmur, Langmuir 19, 8343 (2003). https://doi.org/10.1021/la0344682

    Article  CAS  Google Scholar 

  28. A. Zita, M. Hermansson, FEMS Microbiol. Lett. 152, 299 (1997). https://doi.org/10.1111/j.1574-6968.1997.tb10443.x

    Article  CAS  Google Scholar 

  29. J. Jenkins, J. Mantell, C. Neal, A. Gholinia, P. Verkade, A.H. Nobbs, B. Su, Nat. Commun. 11, 1626 (2020). https://doi.org/10.1038/s41467-020-15471-x

    Article  CAS  Google Scholar 

  30. L. Genova, M. Roberts, Y. Wong, C. Harper, A. Santiago, B. Fu, A. Srivastava, W. Jung, L. Wang, L. Krzeminski, X. Mao, X. Sun, C. Hui, P. Chen, C. Hernandez, Proc. Natl. Acad. Sci. 116, 25462 (2019). https://doi.org/10.1073/pnas.1909562116

    Article  CAS  Google Scholar 

  31. E.L. Hanson, J. Schwartz, B. Nickel, N. Koch, M.F. Danisman, J. Am. Chem. Soc. 125, 16074 (2003). https://doi.org/10.1021/ja035956z

    Article  CAS  Google Scholar 

  32. W. Jang, E.C. Jeon, D.S. Choi, B.H. Kim, Y.H. Seo, J Korean Soc. Manuf. Process Eng. 13, 13 (2014). https://doi.org/10.14775/ksmpe.2014.13.4.013

    Article  Google Scholar 

  33. S.A. Paniagua, E.L. Li, S.R. Marder, Phys. Chem. Chem. Phys 16, 2874 (2014). https://doi.org/10.1039/C3CP54637C

    Article  CAS  Google Scholar 

  34. M. Castro, M. Vásquez, J. Cordero, M. Benavides, J. González, M.J. López, J. Vega, Y. Corrales, Surf Interfaces 30, 101881 (2022). https://doi.org/10.1016/j.surfin.2022.101881

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Office of Naval Research Grant N62909-20-1-2031, UCR Project 540-C0-125 (ascribed to the Programme of Natural and Health Sciences) and CeNAT 2020-2021 and 2021-2022 scholarships. We thank CENIBIOT/CENAT for access to their fluorescence microscope, Sergio Solano for experimental support, Jessica Nock Paniagua for manuscript editing, and Prof. José Vega Baudrit for administrative support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio A. Paniagua.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

43578_2023_909_MOESM1_ESM.docx

Supplementary file1 (DOCX 944 kb)—Relevant thickness, feature widths, and contact angle of smooth clean substrates, monolayer-coated smooth controls and patterned samples can be found in Supporting Info.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cordero-Guerrero, J., Jiménez-Thuel, G. & Paniagua, S.A. Sub-micron patterning of metal oxide surfaces via microcontact printing and microtransfer molding of amphiphilic molecules and antifouling application. Journal of Materials Research 38, 1573–1582 (2023). https://doi.org/10.1557/s43578-023-00909-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-00909-x

Keywords

Navigation