Skip to main content
Log in

One-pot synthesis of MoS2–CNx–metal oxide hetero structures and their synergistic role towards efficient oxygen reduction reaction

  • Invited Paper
  • FOCUS ISSUE: structure-Property Relationships in Emerging Two-dimensional Materials
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Two-dimensional transition metal dichalcogenides are at the forefront of materials research due to their exceptional catalytic, electronic and chemical properties. Herein, we developed a unique heterointerface comprising MoS2/CNx/metal oxide (Fe, Co, Ni) to scrutinize the effects of metal oxide anchored within MoS2 layers towards oxygen reduction reaction and catalyst durability. MoS2/CNx/metal oxide (Fe,Co,Ni) is prepared by a solution combustion method (one-step process). Surface properties and morphology are investigated by various surface probing techniques viz. FT-IR, Raman, XRD, EDAX and TEM. Results revealed that upon MoS2 integration onto the metal oxides, the ORR activity was found to be significantly enhanced. Further, MoS2–CNx–FeOx matrix retains more than 50% of initial ORR activity at − 0.2 V and is more durable than pristine MoS2. The mass activity of metal oxide appreciably improved when combined with MoS2. The mass-specific current density towards ORR at − 0.4 V of the catalysts MoS2, MoS2/CNx/FeOx, MoS2/CNx/CoOx and MoS2/CNx/NiOx are − 0.5 mA cm−2, − 0.7 mA cm−2, − 0.42 mA cm−2 and 0.23 mA cm−2 respectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

Data will be provided upon request.

References

  1. K.E. Guima, L.E. Gomes, J. Alves-Fernandes, H. Wender, C.A. Martins, Harvesting energy from an organic pollutant model using a new 3D-printed microfluidic photo fuel cell. ACS Appl. Mater. Interfaces 12(49), 54563 (2020)

    Article  CAS  Google Scholar 

  2. A. Sakthivel, A. Chandrasekaran, S. Jayakumar, P. Manickam, S. Alwarappan, Sulphur doped graphitic carbon nitride as an efficient electrochemical platform for the detection of acetaminophen. J. Electrochem. Soc. 166(15), B1461 (2019)

    Article  CAS  Google Scholar 

  3. S. Zhang, Y. Tang, Y. Chen, J. Zheng, Synthesis of gold nanoparticles coated on flower-like MoS2 microsphere and their application for electrochemical nitrite sensing. J. Electroanal. Chem. 839, 195 (2019)

    Article  CAS  Google Scholar 

  4. J. Mao, P. Liu, C. Du, D. Liang, J. Yan, W. Song, Tailoring 2D MoS2 heterointerfaces for promising oxygen reduction reaction electrocatalysis. J. Mater. Chem. A 7(15), 8785 (2019)

    Article  CAS  Google Scholar 

  5. G. Solomon, S. You, M.M. Natile, V. Morandi, I. Concina, A. Vomiero, Ag2 S/MoS2 nanocomposites anchored on reduced graphene oxide: fast interfacial charge transfer for hydrogen evolution reaction. ACS Appl. Mater. Interface 11, 22380–22389 (2019)

    Article  CAS  Google Scholar 

  6. Z. Kang, Y. Peng, Y. Qian, D. Yuan, M.A. Addicoat, T. Heine, Z. Hu, L. Tee, Z. Guo, D. Zhao, Mixed Matrix Membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO2 separation. Chem. Mater. 28(5), 1277 (2016)

    Article  CAS  Google Scholar 

  7. P. Dhanasekaran, K. Lokesh, P.K. Ojha, A.K. Sahu, S.D. Bhat, D. Kalpana, Electrochemical deposition of three-dimensional platinum nanoflowers for high-performance polymer electrolyte fuel cells. J. Colloid Interface Sci. 572, 198 (2020)

    Article  CAS  Google Scholar 

  8. T. Balakrishnan, M. Anis, S. Arun, M. Kumar, S. Arun kumar, S. Mayavan, BCN–Co3O4 hybrid: a highly efficient catalyst for the oxygen evolution reaction and dye degradation. RSC Adv. 6(83), 79448 (2016)

    Article  CAS  Google Scholar 

  9. S.J. Rowley, G.C. Smith, C.E. Banks, Mass-producible 2D-MoS2 - impregnated screen-printed electrodes that demonstrate efficient electrocatalysis toward the oxygen reduction reaction. ACS Appl. Mater. Interfaces 9(27), 22539 (2017)

    Article  Google Scholar 

  10. X. Gu, C. Lai, Recent development of metal compound applications in lithium–sulphur batteries. J. Mater. Res. 33, 16 (2018)

    Article  CAS  Google Scholar 

  11. S. Mohanapriya, S.D. Bhat, A.K. Sahu, A. Manokaran, R. Vijayakumar, S. Pitchumani, P. Sridhar, A.K. Shukla, Sodium-alginate-based proton-exchange membranes as electrolytes for DMFCs. Energy Environ. Sci. 2, 1746 (2010)

    Article  Google Scholar 

  12. J.J. Hu, J.H. Sanders, J.S. Zabinski, Synthesis and microstructural characterization of inorganic fullerene-like MoS2 and graphite-MoS2 hybrid nanoparticles. J. Mater. Res. 21, 1033 (2006)

    Article  CAS  Google Scholar 

  13. M.K. Singla, P. Nijhawan, A.S. Oberoi, Hydrogen fuel and fuel cell technology for cleaner future: a review. Environ. Sci. Pollut. Res. 28, 15607 (2021)

    Article  CAS  Google Scholar 

  14. X. Wei, R. Wang, W. Zhao, G. Chen, M. Chai, L. Zhang, J. Zhang, Recent research progress in PEM fuel cell electrocatalyst degradation and mitigation strategies. EnergyChem 3, 100061 (2021)

    Article  CAS  Google Scholar 

  15. C.J. Zhang, S. Pinilla, N. McEvoy, C.P. Cullen, B. Anasori, E. Long, S.H. Park, A. Seral-Ascaso, A. Shmeliov, D. Krishnan, C. Morant, X. Liu, G.S. Duesberg, Y. Gogotsi, V. Nicolosi, Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem. Mater. 29(11), 4848 (2017)

    Article  CAS  Google Scholar 

  16. X. Wang, H. Li, H. Li, S. Lin, W. Ding, X. Zhu, Z. Sheng, H. Wang, X. Zhu, Y. Sun, 2D/2D 1T-MoS2/Ti3C2 MXene heterostructure with excellent supercapacitor performance. Adv. Funct. Mater. 30(15), 0190302 (2020)

    Article  CAS  Google Scholar 

  17. S. Arunkumar, V. Jegatheesh, R. Soundharya, M.J. Alka, S. Mayavan, BCN based oil coatings for mild steel under aggressive chloride ion environment. Appl. Surf. Sci. 449, 287 (2018)

    Article  CAS  Google Scholar 

  18. S. Mohanapriya, S.D. Bhat, A.K. Sahu, S. Pitchumani, P. Sridhar, A.K. Shukla, A new mixed-matrix membrane for DMFCs. Energy Environ. Sci. 1, 1210 (2009)

    Article  Google Scholar 

  19. I. Song, H. Cheul, Synthesis and properties of molybdenum disulphide : from bulk to atomic layers. RSC Adv. 5, 7495 (2015)

    Article  CAS  Google Scholar 

  20. H. Zhang, Y. Huang, S. Hu, Q. Huang, C. Wei, W. Zhang, W. Yang, P. Dong, A. Hao, Self-assembly of graphitic carbon nitride nanosheets–carbon nanotube composite for electrochemical simultaneous determination of catechol and hydroquinone. Electrochim. Acta 176, 28 (2015)

    Article  CAS  Google Scholar 

  21. X. Dai, K. Du, Z. Li, M. Liu, Y. Ma, H. Sun, X. Zhang, Co-doped MoS2 nanosheets with the dominant CoMoS phase coated on carbon as an excellent electrocatalyst for hydrogen evolution. ACS Appl. Mater. Interfaces 7(49), 27242 (2015)

    Article  CAS  Google Scholar 

  22. N.R. Dalila, M.K. Arshad, S.C.B. Gopinath, W.M.W. Norhaimi, M.F.M. Fathil, Current and future envision on developing biosensors aided by 2D molybdenum disulfide (MoS2) productions. Biosens. Bioelectron. 132, 248 (2019)

    Article  CAS  Google Scholar 

  23. J. Cai, J. Huang, Y. Lai, 3D Au-decorated BiMoO6 nanosheet/TiO2 nanotube array heterostructure with enhanced UV and visible-light photocatalytic activity. J. Mater. Chem. A 5(31), 16412 (2017)

    Article  CAS  Google Scholar 

  24. H. Zhang, Y. Tian, J. Zhao, Q. Cai, Z. Chen, Small dopants make big differences : enhanced electrocatalytic performance of MoS2 monolayer for oxygen reduction reaction ( ORR ) by N–and P–doping. Electrochim. Acta 225, 543 (2017)

    Article  CAS  Google Scholar 

  25. G. Zhan, J. Zhang, Y. Wang, C. Yu, J. Wu, J. Cui, X. Shu, Y. Qin, H. Zheng, J. Sun, J. Yan, Y. Zhang, C. Tiwary, Y. Wu, MoS2 quantum dots decorated ultrathin NiO nanosheets for overall water splitting. J. Colloid Interface Sci. 566, 411 (2020)

    Article  CAS  Google Scholar 

  26. B. Kirubasankar, Y. Won, L. Adofo, S. Choi, S. Kim, K. Kim, Atomic and structural modifications of two-dimensional transition metal dichalcogenides for various advanced applications. Chem. Sci. 13, 7707 (2022)

    Article  CAS  Google Scholar 

  27. M. Yi, C. Zhang, The synthesis of two-dimensional MoS2 nanosheets with enhanced tribological properties as oil additives. RSC Adv. 8(17), 9564 (2018)

    Article  CAS  Google Scholar 

  28. S.A. Shah, X. Shen, M. Xie, G. Zhu, Z. Ji, H. Zhou, K. Xu, X. Yue, A. Yuan, J. Zhu, Y. Chen, Nickel@Nitrogen-doped Carbon@MoS2 nanosheets: an efficient electrocatalyst for hydrogen evolution reaction. Small 15(9), 1804545 (2019)

    Article  Google Scholar 

  29. J.Y. Wu, M.N. Lin, L.D. Wang, T. Zhang, Photoluminescence of MoS2 prepared by effective grinding-assisted sonication exfoliation. J. Nanomater. 107, 1–7 (2014)

    Google Scholar 

  30. S. Farhadi, M. Javanmard, G. Nadri, Characterization of cobalt oxide nanoparticles prepared by the thermal decomposition of [Co(NH3)5(H2O)](NO3)3 complex and study of their photocatalytic activity. Acta Chim. Slov. 63(2), 335 (2016)

    Article  CAS  Google Scholar 

  31. D.E. Fouad, C. Zhang, H. El-Didamony, L. Yingnan, T.D. Mekuria, A.H. Shah, Improved size, morphology and crystallinity of hematite (α-Fe2O3) nanoparticles synthesized via the precipitation route using ferric sulfate precursor. Results Phys. 12, 1253 (2019)

    Article  Google Scholar 

  32. Y.S. Li, J.S. Church, A.L. Woodhead, Infrared and Raman spectroscopic studies on iron oxide magnetic nano-particles and their surface modifications. J. Magn. Magn. Mater. 324(8), 1543 (2012)

    Article  CAS  Google Scholar 

  33. S. Vivek, P. Arunkumar, K.S. Babu, In situ generated nickel on cerium oxide nanoparticle for efficient catalytic reduction of 4-nitrophenol. RSC Adv. 6(51), 45947 (2016)

    Article  CAS  Google Scholar 

  34. W. Lei, Y.P. Deng, G. Li, Z.P. Cano, X. Wang, D. Luo, Y. Liu, D. Wang, Z. Chen, Two-dimensional phosphorus-doped carbon nanosheets with tunable porosity for oxygen reactions in zinc-air batteries. ACS Catal. 8(3), 2464 (2018)

    Article  CAS  Google Scholar 

  35. S. Asadizadeh, M. Amirnasr, S. Meghdadi, F. Fadaei-Tirani, K. Schenk, Facile synthesis of Co3O4 nanoparticles from a novel tetranuclear cobalt(III) complex. Application as efficient electrocatalyst for oxygen evolution reaction in alkaline media. Int. J. Hydrogen Energy 43(10), 4922 (2018)

    Article  CAS  Google Scholar 

  36. H. Xu, L. Gao, Q. Zhang, J. Li, J. Diwu, X. Chou, J. Tang, C. Xue, Preparation method of Co3O4 nanoparticles using degreasing cotton and their electrochemical performances in supercapacitors. J. Nanomater. 2014, e723057 (2014)

    Article  Google Scholar 

  37. O. Alduhaish, M. Ubaidullah, A.M. Al-Enizi, N. Alhokbany, S.M. Alshehri, J. Ahmed, Facile synthesis of mesoporous α-Fe2O3@g-C3N4-NCs for efficient bifunctional electro-catalytic activity (OER/ORR). Sci. Rep. 9(1), 14139 (2019)

    Article  Google Scholar 

  38. S. Zhang, Y. Xie, M. Yang, Z. Li, L. Zhang, J. Guo, J. Tang, J. Chen, X. Wang, A defect-rich ultrathin MoS2/rGO nanosheet electrocatalyst for the oxygen reduction reaction. RSC Adv. 11(40), 24508 (2021)

    Article  CAS  Google Scholar 

  39. C. Liu, H. Dong, Y. Ji, T. Hou, Y. Li, Origin of the catalytic activity of phosphorus doped MoS2 for oxygen reduction reaction (ORR) in alkaline solution: a theoretical study. Sci. Rep. 8(1), 13292 (2018)

    Article  Google Scholar 

  40. S. Beyhan, N.E. Şahin, S. Pronier, J.-M. Léger, F. Kadırgan, Comparison of oxygen reduction reaction on Pt/C, Pt-Sn/C, Pt-Ni/C, and Pt-Sn-Ni/C catalysts prepared by Bönnemann method: a rotating ring disk electrode study. Electrochim. Acta 151, 565 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

MP and PD thank CSIR-for Senior Research Associateship Scientist's Pool Scheme- 9037-A and 9123-A, respectively, for the funding. SDB thank the Department of Science of Technology DST-HFC(DST/TMD/HFC/2K18/78(g)) program for the funding. SA thank CIF, CECRI for the characterization of the materials.

Author information

Authors and Affiliations

Authors

Contributions

SA—Work Plan, Supervision, Draft Correction and Final Draft; AS—Material synthesis and surface characterization and interpretation, MPS—Electrochemical Experiments, results analysis and validation, First draft; DP—Formal analysis, data curation, First and Second draft; SDB—Investigation, Results Analysis, supervision. All authors have read and agreed to the final version of the manuscript prior submission.

Corresponding author

Correspondence to Subbiah Alwarappan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakthivel, A., Subramanian, M.P., Prabhakaran, D. et al. One-pot synthesis of MoS2–CNx–metal oxide hetero structures and their synergistic role towards efficient oxygen reduction reaction. Journal of Materials Research 38, 1824–1831 (2023). https://doi.org/10.1557/s43578-023-00902-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-00902-4

Keywords

Navigation