Skip to main content
Log in

The role of Al on microstructure and high-temperature oxidation behavior of AlxMnCrCoFeNi (x = 0, 0.2, 0.4, 1) high-entropy alloys

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this study, the effect of Al content on microstructure and high-temperature oxidation behavior of AlxMnCrCoFeNi (x = 0, 0.2, 0.4, 1) high-entropy alloys were investigated. High-entropy alloys with different compositions were synthesized by vacuum melting. Analysis of the microstructure and phase composition was performed by Backscatter Electron Microscopy and X-ray diffraction methods. The microstructures of the alloys were FCC for Al0 and FCC + BCC/B2 for other alloys. Cyclic oxidation tests were performed in an air atmosphere for 120 h at 1000 °C. The oxidation kinetics obeyed the parabolic law, and the main component of the oxide layer was Mn oxide. With increasing Al, a fine and dense Al2O3 oxide film was formed at the bottom of the oxide layer. The parabolic rate constant (Kp) decreased with Al content up to 8 at.%, whereas a further increase in Al concentration to 16 at.% revealed an inverse effect.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, Z.P. Lu, A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater. 102, 187–196 (2016). https://doi.org/10.1016/j.actamat.2015.08.076

    Article  CAS  Google Scholar 

  2. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1–93 (2014). https://doi.org/10.1016/j.pmatsci.2013.10.001

    Article  CAS  Google Scholar 

  3. M.H. Tsai, J.W. Yeh, High-entropy alloys: a critical review. Mater. Res. Lett. 2(3), 107–123 (2014). https://doi.org/10.1080/21663831.2014.912690

    Article  CAS  Google Scholar 

  4. W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6(5), 299–303 (2004). https://doi.org/10.1002/adem.200300567

    Article  CAS  Google Scholar 

  5. G.L. Ma, LCh. Fu, J.Y. Tian, Recent progress in high-entropy alloys. Adv. Mater. Res. 631–632, 227–232 (2013). https://doi.org/10.4028/www.scientific.net/AMR.631-632.227

    Article  Google Scholar 

  6. X. Wang, W. Guo, Y. Fu, High-entropy alloys: emerging materials for advanced functional applications. J. Mater. Chem. A 9(2), 663–701 (2021). https://doi.org/10.1039/d0ta09601f

    Article  CAS  Google Scholar 

  7. D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448–511 (2017). https://doi.org/10.1016/j.actamat.2016.08.081

    Article  CAS  Google Scholar 

  8. M.H. Tsai, R.C. Tsai, T. Chang, W.F. Huang, Intermetallic phases in high-entropy alloys: statistical analysis of their prevalence and structural inheritance. Metals (Basel) 9(2), 1–18 (2019). https://doi.org/10.3390/met9020247

    Article  CAS  Google Scholar 

  9. E.J. Pickering, N.G. Jones, High-entropy alloys: a critical assessment of their founding principles and future prospects. Int. Mater. Rev. 61(3), 183–202 (2016). https://doi.org/10.1080/09506608.2016.1180020

    Article  CAS  Google Scholar 

  10. X. Yang, Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 132(2–3), 233–238 (2012). https://doi.org/10.1016/j.matchemphys.2011.11.021

    Article  CAS  Google Scholar 

  11. K.Y. Tsai, M.H. Tsai, J.W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 6(13), 4887–4897 (2013). https://doi.org/10.1016/j.actamat.2013.04.058

    Article  CAS  Google Scholar 

  12. A. Mehta, Y. Sohn, High Entropy and sluggish diffusion ‘core’ effects in senary FCC Al–Co–Cr–Fe–Ni–Mn alloys. ACS Comb. Sci. 22(12), 757–767 (2020). https://doi.org/10.1021/acscombsci.0c00096

    Article  CAS  Google Scholar 

  13. H.S. Grewal, R.M. Sanjiv, H.S. Arora, R. Kumar, A. Ayyagari, S. Mukherjee, H. Singh, Activation energy and high temperature oxidation behavior of multi-principal element alloy. Adv. Eng. Mater. 19(11), 1–5 (2017). https://doi.org/10.1002/adem.201700182

    Article  CAS  Google Scholar 

  14. C. Lee, G. Song, M.C. Gao, R. Feng, P. Chen, J. Brechtl, Y. Chen, K. An, W. Guo, J.D. Poplawsky, Lattice distortion in a strong and ductile refractory high-entropy alloy. Acta Mater. 160, 158–172 (2018). https://doi.org/10.1016/j.actamat.2018.08.053

    Article  CAS  Google Scholar 

  15. Q. He, Y. Yang, On lattice distortion in high entropy alloys. Front. Mater. 5, 1–8 (2018). https://doi.org/10.3389/fmats.2018.00042

    Article  Google Scholar 

  16. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 10(6), 534–538 (2008). https://doi.org/10.1002/adem.200700240

    Article  CAS  Google Scholar 

  17. S. Guo, C. Ng, J. Lu, C.T. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 109(10), 1–5 (2011). https://doi.org/10.1063/1.3587228

    Article  CAS  Google Scholar 

  18. B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys Mater. Sci. Eng. A 375–377(1–2), 213–218 (2004). https://doi.org/10.1016/j.msea.2003.10.257

    Article  CAS  Google Scholar 

  19. F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 61(15), 5743–5755 (2013). https://doi.org/10.1016/j.actamat.2013.06.018

    Article  CAS  Google Scholar 

  20. T.M. Butler, M.L. Weaver, Oxidation behavior of arc melted AlCoCrFeNi multi-component high-entropy alloys. Alloys Compd. 674, 229–244 (2016). https://doi.org/10.1016/j.jallcom.2016.02.257

    Article  CAS  Google Scholar 

  21. T.M. Butler, M.L. Weaver, Influence of annealing on the microstructures and oxidation behaviors of Al8(CoCrFeNi)92, Al15(CoCrFeNi)85, and Al30(CoCrFeNi)70 high-entropy alloys. Metals (Basel) 6(9), 222 (2016). https://doi.org/10.3390/met6090222

    Article  Google Scholar 

  22. Z. Tang, L. Huang, W. He, P.K. Liaw, Alloying and processing effects on the aqueous corrosion behavior of high-entropy alloys. Entropy 16(2), 895–911 (2014). https://doi.org/10.3390/e16020895

    Article  CAS  Google Scholar 

  23. T.M. Butler, J.P. Alfano, R.L. Martens, M.L. Weaver, High-temperature oxidation behavior of Al–Co–Cr–Ni–(Fe or Si) multicomponent high-entropy alloys. JOM 67(1), 246–259 (2015). https://doi.org/10.1007/s11837-014-1185-7

    Article  CAS  Google Scholar 

  24. J. Dabrowa, G. Cieslak, M. Stygar, K. Mroczka, K. Berent, T. Kulik, M. Danielewski, Influence of Cu content on high temperature oxidation behavior of AlCoCrCuxFeNi high entropy alloys (x= 0; 0.5; 1). Intermetallics 84, 52–61 (2017). https://doi.org/10.1016/j.intermet.2016.12.015

    Article  CAS  Google Scholar 

  25. E. Ananiadis, K. Lentzaris, E. Georgatis, C. Mathiou, A. Poulia, A.E. Karantzalis, AlNiCrFeMn equiatomic high entropy alloy: a further insight in its microstructural evolution, mechanical and surface degradation response. Met. Mater. Int. 26(6), 793–811 (2020). https://doi.org/10.1007/s12540-019-00401-4

    Article  CAS  Google Scholar 

  26. Y.Y. Liu, Z. Chen, Y.Z. Chen, J.C. Shi, Z.Y. Wang, S. Wang, F. Liu, Effect of Al content on high temperature oxidation resistance of AlxCoCrCuFeNi high entropy alloys (x=0, 0.5, 1, 1.5, 2). Vacuum 169, 108837 (2019). https://doi.org/10.1016/j.vacuum.2019.108837

    Article  CAS  Google Scholar 

  27. C.S. Giggins, F.S. Pettit, Oxidation of Ni–Cr–Al alloys between 1000° and 1200 °C. J. Electrochem. Soc. 118(11), 1782 (1971). https://doi.org/10.1149/1.2407837

    Article  CAS  Google Scholar 

  28. C.J. Tong et al., Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 36(5), 1263–1271 (2005). https://doi.org/10.1007/s11661-005-0218-9

    Article  Google Scholar 

  29. B.R. Anne, S. Shaik, M. Tanaka, A. Basu, A crucial review on recent updates of oxidation behavior in high entropy alloys. SN Appl. Sci. 3(3), 1–23 (2021). https://doi.org/10.1007/s42452-021-04374-1

    Article  CAS  Google Scholar 

  30. G. Laplanche, U.F. Volkert, G. Eggeler, E.P. George, Oxidation behavior of the CrMnFeCoNi high-Entropy alloy. Oxid. Metals 85(5–6), 629–645 (2016). https://doi.org/10.1007/s11085-016-9616-1

    Article  CAS  Google Scholar 

  31. K.R. Lim, K.S. Lee, J.S. Lee, J.Y. Kim, H.J. Chang, Y.S. Na, Dual-phase high-entropy alloys for high-temperature structural applications. J. Alloys Compd. 728, 1235–1238 (2017). https://doi.org/10.1016/j.jallcom.2017.09.089

    Article  CAS  Google Scholar 

  32. Y.S. Huang, L. Chen, H.W. Lui, M.H. Cai, J.W. Yeh, Microstructure, hardness, resistivity and thermal stability of sputtered oxide films of AlCoCrCu0.5NiFe high-entropy alloy. Mater. Sci. Eng. A 457(1–2), 77–83 (2007). https://doi.org/10.1016/j.msea.2006.12.001

    Article  CAS  Google Scholar 

  33. Y.Y. Chen, U.T. Hong, H.C. Shih, J.W. Yeh, T. Duval, Electrochemical kinetics of the high entropy alloys in aqueous environments—a comparison with type 304 stainless steel. Corros. Sci. 47(11), 2679–2699 (2005). https://doi.org/10.1016/j.corsci.2004.09.026

    Article  CAS  Google Scholar 

  34. W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, J.W. Yeh, Effects of Al addition on the microstructure and mechanical property of Al xCoCrFeNi high-entropy alloys. Intermetallics 26, 44–51 (2012). https://doi.org/10.1016/j.intermet.2012.03.005

    Article  CAS  Google Scholar 

  35. S. Abbaszadeh, A. Pakseresht, H. Omidvar, A. Shafiei, Investigation of the high-temperature oxidation behavior of the Al0.5CoCrFeNi high entropy alloy. Surf. Interfaces 21, 100724 (2020). https://doi.org/10.1016/j.surfin.2020.100724

    Article  CAS  Google Scholar 

  36. A. Ostovari Moghaddama, N.A. Shaburovab, M.V. Sudarikovc, S.N. Veselkovb, O.V. Samoilova, E.A. Trofimovb, High temperature oxidation resistance of Al0.25CoCrFeNiMn and Al0.45CoCrFeNiSi0.45 high entropy alloys. Vacuum 192, 110412 (2021). https://doi.org/10.1016/j.vacuum.2021.110412

    Article  CAS  Google Scholar 

  37. Y.C. Hsu, C.L. Li, C.H. Hsueh, Effects of Al addition on microstructures and mechanical properties of CoCrFeMnNiAlx high entropy alloy films. Entropy 22(1), 2 (2020). https://doi.org/10.3390/e22010002

    Article  CAS  Google Scholar 

  38. F. Ye, Z. Jiao, S. Yan, L. Guo, L. Feng, J. Yu, Microbeam plasma arc remanufacturing: effects of Al on microstructure, wear resistance, corrosion resistance and high temperature oxidation resistance of AlxCoCrFeMnNi high-entropy alloy cladding layer. Vacuum 174, 109178 (2020). https://doi.org/10.1016/j.vacuum.2020.109178

    Article  CAS  Google Scholar 

  39. S. Guo, C.T. Liu, Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase. Prog. Nat. Sci. Mater. Int. 21(6), 433–446 (2011). https://doi.org/10.1016/S1002-0071(12)60080-X

    Article  Google Scholar 

  40. J.C. Rao, H.Y. Diao, V. Ocelík, D. Vainchtein, C. Zhang, C. Kuo, Z. Tang, W. Guo, J.D. Poplawsky, Secondary phases in AlxCoCrFeNi high-entropy alloys: an in-situ TEM heating study and thermodynamic appraisal. Acta Mater. 131, 206–220 (2017). https://doi.org/10.1016/j.actamat.2017.03.066

    Article  CAS  Google Scholar 

  41. Y.F. Kao, T.J. Chen, S.K. Chen, J.W. Yeh, Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys. J. Alloys Compd. 488(1), 57–64 (2009). https://doi.org/10.1016/j.jallcom.2009.08.090

    Article  CAS  Google Scholar 

  42. L. Lijing, X. Xin, Z. Zhihong, W. Yucheng, P.K. Liaw, Microstructure stability and its influence on the mechanical properties of CrMnFeCoNiAl0.25 high entropy alloy. Metals Mater. Int. 26, 1192–1199 (2020). https://doi.org/10.1007/s12540-019-00542-6

    Article  CAS  Google Scholar 

  43. L.C. Tsao, C.S. Chen, C.P. Chu, Age hardening reaction of the Al0.3CrFe1.5MnNi0.5 high entropy alloy. Mater. Des. 36, 854–858 (2012). https://doi.org/10.1016/j.matdes.2011.04.067

    Article  CAS  Google Scholar 

  44. D.G. Shaysultanov, N.D. Stepanov, A.V. Kuznetsov, G.A. Salishchev, O.N. Senkov, Phase composition and superplastic behavior of a wrought AlCoCrCuFeNi high-entropy alloy. JOM 65(12), 1815–1828 (2013). https://doi.org/10.1007/s11837-013-0754-5

    Article  CAS  Google Scholar 

  45. S. Singh, N. Wanderka, B.S. Murty, U. Glatzel, J. Banhart, Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy. Acta Mater. 59(1), 182–190 (2011). https://doi.org/10.1016/j.actamat.2010.09.023

    Article  CAS  Google Scholar 

  46. C.C. Tung, J.W. Yeh, T.-t Shun, S.K. Chen, Y.S. Huang, H.C. Chen, On the elemental effect of AlCoCrCuFeNi high-entropy alloy system. Mater. Lett. 61(1), 1–5 (2007). https://doi.org/10.1016/j.matlet.2006.03.140

    Article  CAS  Google Scholar 

  47. Y.K. Kim, Y.A. Joo, H.S. Kim, K.A. Lee, High temperature oxidation behavior of Cr–Mn–Fe–Co–Ni high entropy alloy. Intermetallics 98, 45–53 (2018). https://doi.org/10.1016/j.intermet.2018.04.006

    Article  CAS  Google Scholar 

  48. F. Ye, Z. Jiao, Y. Yang, Effect of medium temperature precipitation phase and Mn element diffusion mechanism on high temperature oxidation process of repair and remanufacture CoCrFeMnNi high-entropy alloy cladding. Mater. Res. Express 6(5), 056521 (2019). https://doi.org/10.1088/2053-1591/ab01be

    Article  CAS  Google Scholar 

  49. J. Dąbrowa, M. Danielewski, State-of-the-art diffusion studies in the high entropy alloys. Metals (Basel) 10(3), 347 (2020). https://doi.org/10.3390/met10030347

    Article  CAS  Google Scholar 

  50. P.R.S. Jackson, G.R. Wallwork, High temperature oxidation of iron-manganese-aluminum based alloys. Oxid. Metals 21(3–4), 135–170 (1984). https://doi.org/10.1007/BF00741468

    Article  CAS  Google Scholar 

  51. X. Chen, Y. Sui, J. Qi, Y. He, F. Wei, Q. Meng, Zh. Sun, Microstructure of Al1.3CrFeNi eutectic high entropy alloy and oxidation behavior at 1000 °C. J. Mater. 32, 2109–20116 (2017). https://doi.org/10.1557/jmr.2017.10

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Iran National Science Foundation (INSF) (Grant No. 98002224).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adele Familifard or Ahmad Ali Amadeh.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Familifard, A., Amadeh, A.A., Raygan, S. et al. The role of Al on microstructure and high-temperature oxidation behavior of AlxMnCrCoFeNi (x = 0, 0.2, 0.4, 1) high-entropy alloys. Journal of Materials Research 38, 1197–1210 (2023). https://doi.org/10.1557/s43578-022-00876-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00876-9

Keywords

Navigation