Skip to main content
Log in

Versatile effects of transition metal-doped copper oxide nanoparticles on the efficacy of photocatalytic and antimicrobial activity

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The structural, optical, photocatalytic, and antimicrobial properties of transition metals (Co, Ni, and Mn) incorporated CuO nanostructures via co-precipitation route were thoroughly investigated. The X-ray diffraction pattern revealed the monoclinic structure of pristine and doped CuO nanoparticles. The band gap of the synthesized nanoparticles was estimated using Tauc Plots, and the results revealed that the band gap increases with the incorporation of dopants in the CuO lattice. Sprouts, flowers, and cubic morphological structures were formed while doping copper oxide nanoparticles. The photocatalytic performance of synthesized nanoparticles for the degradation of rhodamine B dye was investigated. The results show that cobalt-doped CuO nanoparticles have excellent photocatalytic activity when compared to other samples. The antimicrobial activity of pristine and transition metal-doped copper oxide nanoparticles was investigated against gram-positive and gram-negative bacteria via the agar well-diffusion method. Transition metal-doped CuO nanoparticles are found to possess more effective microbial resistance than pristine CuO.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. M. Chauhan, N. Kaur, P. Bansal, R. Kumar, S. Srinivasan, G.R. Chaudhary, Proficient photocatalytic and sonocatalytic degradation of organic pollutants using CuO nanoparticles. J. Nanomater. 2020, 1 (2020)

    Article  Google Scholar 

  2. B. Guan, J. Yu, S. Guo, S. Yu, S. Han, Porous nickel doped titanium dioxide nanoparticles with improved visible light photocatalytic activity. Nanoscale Adv. 2, 1352–1357 (2020)

    Article  CAS  Google Scholar 

  3. M. Rafique, M. Hamza, M. Shakil, M. Irshad, M.B. Tahir, M.R. Kabli, Highly efficient and visible light–driven nickel–doped vanadium oxide photocatalyst for degradation of Rhodamine B Dye. Appl. Nanosci. 10, 2365–2374 (2020)

    Article  CAS  Google Scholar 

  4. N. Sanjini, B. Winston, S. Velmathi, Effect of precursors on the synthesis of CuO nanoparticles under microwave for photocatalytic activity towards methylene blue and rhodamine B dyes. J. Nanosci. Nanotechnol. 17, 495–501 (2017)

    Article  CAS  Google Scholar 

  5. A. Tadjarodi, O. Akhavan, K. Bijanzad, Photocatalytic activity of CuO nanoparticles incorporated in mesoporous structure prepared from bis (2-aminonicotinato) copper (II) microflakes. Trans. Nonferrous Met. Soc. China 25, 3634–3642 (2015)

    Article  CAS  Google Scholar 

  6. S. Akin, S. Sonmezoglu, Metal oxide nanoparticles as electron transport layer for highly efficient dye-sensitized solar cells, in Emerging Materials for Energy Conversion and Storage. ed. by K.Y. Cheong, G. Impellizzeri (Elsevier, Amsterdam, 2018), pp.39–79

    Chapter  Google Scholar 

  7. C. Karunakaran, V. Rajeswari, P. Gomathisankar, Optical, electrical, photocatalytic, and bactericidal properties of microwave synthesized nanocrystalline Ag–ZnO and ZnO. Solid State Sci. 13, 923–928 (2011)

    Article  CAS  Google Scholar 

  8. S. Sukumar, A. Rudrasenan, D. Padmanabhan-Nambiar, Green-synthesized rice-shaped copper oxide nanoparticles using Caesalpinia bonducella seed extract and their applications. ACS Omega 5, 1040–1051 (2020)

    Article  CAS  Google Scholar 

  9. X. Zheng, C. Xu, Y. Tomokiyo, E. Tanaka, H. Yamada, Y. Soejima, Observation of charge stripes in cupric oxide. Phys. Rev. Lett. 85, 5170 (2000)

    Article  CAS  Google Scholar 

  10. G. Ren, D. Hu, E.W. Cheng, M.A. Vargas-Reus, P. Reip, R.P. Allaker, Characterisation of copper oxide nanoparticles for antimicrobial applications. Int. J. Antimicrob. Agents 33, 587–590 (2009)

    Article  CAS  Google Scholar 

  11. L. Xiong, H. Xiao, S. Chen, Z. Chen, X. Yi, S. Wen, G. Zheng, Y. Ding, H. Yu, Fast and simplified synthesis of cuprous oxide nanoparticles: annealing studies and photocatalytic activity. RSC Adv. 4, 62115–62122 (2014)

    Article  CAS  Google Scholar 

  12. H. Letifi, Y. Litaiem, D. Dridi, S. Ammar, R. Chtourou, Enhanced photocatalytic activity of vanadium-doped SnO2 nanoparticles in rhodamine B degradation. Adv. Condens. Matter Phys. 2019, 1 (2019)

    Article  Google Scholar 

  13. A.M. Azharudeen, A. Badhusha, M.S. Khan, S.A. Prabhu, P.V. Kumar, R. Karthiga, H.A. Odeibat, H. Naz, K. Buvaneswari, M. Islam, Solar power light-driven improved photocatalytic action of Mg-doped CuO nanomaterial modified with polyvinylalcohol. J. Nanomater. 2022, 1–15 (2022)

    Article  Google Scholar 

  14. V. Kavitha, P. Ramesh, D. Geetha, Synthesis of Cu loaded TiO2 nanoparticles for the improved photocatalytic degradation of rhodamine B. Int. J. Nanosci. 15, 1660002 (2016)

    Article  CAS  Google Scholar 

  15. D. Smyth, The effects of dopants on the properties of metal oxides. Solid State Ion. 129, 5–12 (2000)

    Article  CAS  Google Scholar 

  16. N.T. Anu, K. Kumar, K.K. Sharma, Application of Co-doped copper oxide nanoparticles against different multidrug resistance bacteria. Inorg. Nano-Met. Chem. 50, 933–943 (2020)

    Article  CAS  Google Scholar 

  17. A. Pugazhendhi, S.S. Kumar, M. Manikandan, M. Saravanan, Photocatalytic properties and antimicrobial efficacy of Fe doped CuO nanoparticles against the pathogenic bacteria and fungi. Microb. Pathog. 122, 84–89 (2018)

    Article  CAS  Google Scholar 

  18. H. El Aakib, J. Pierson, M. Chaik, H. Ait Dads, C. Samba Vall, A. Narjis, A. Outzourhit, Nickel doped copper oxide thin films prepared by radiofrequency reactive sputtering: study of the impact of nickel content on the structural, optical and electrical properties. Spectrosc. Lett. 54, 487 (2019)

    Article  Google Scholar 

  19. E.A. Zeid, I. Ibrahem, W.A. Mohamed, A.M. Ali, Study the influence of silver and cobalt on the photocatalytic activity of copper oxide nanoparticles for the degradation of methyl orange and real wastewater dyes. Mater. Res. Express 7, 026201 (2020)

    Article  Google Scholar 

  20. A. Masood, T. Iqbal, S. Afsheen, K. Riaz, G. Nabi, M.I. Khan, Simple synthesis of novel Lanthanum doped Copper oxide nanoparticles for wastewater treatment: a comparison between experiment and COMSOL simulation. Res. Square (2022). https://doi.org/10.21203/rs.3.rs-937180/v1

    Article  Google Scholar 

  21. F. El-Sayed, M.S. Hussien, M.I. Mohammed, V. Ganesh, T.H. AlAbdulaal, H.Y. Zahran, I.S. Yahia, H.H. Hegazy, M.S. Abdel-Wahab, M. Shkir, The photocatalytic performance of Nd2O3 doped CuO nanoparticles with enhanced methylene blue degradation: synthesis, characterization and comparative study. Nanomaterials 12, 1060 (2022)

    Article  CAS  Google Scholar 

  22. S. Velliyan, K.S. Murugesan, Synthesis and study on structural, morphological, optical properties and photocatalytic activity of CuO: Erx3+ photocatalysts. Chin. J. Phys. 77, 2425–2434 (2022)

    Article  CAS  Google Scholar 

  23. N. Thakur, K. Kumar, V.K. Thakur, S. Soni, A. Kumar, S.S. Samant, Antibacterial and photocatalytic activity of undoped and (Ag, Fe) co-doped CuO nanoparticles via microwave-assisted method. Nanofabrication (2022). https://doi.org/10.37819/nanofab.007.186

    Article  Google Scholar 

  24. S. Haseena, S. Shanavas, J. Duraimurugan, T. Ahamad, S. Alshehri, R. Acevedo, N. Jayamani, Investigation on photocatalytic and antibacterial ability of green treated copper oxide nanoparticles using Artabotrys Hexapetalus and Bambusa Vulgaris plant extract. Mater. Res. Express 6, 125064 (2019)

    Article  CAS  Google Scholar 

  25. M. Sundararajan, V. Sailaja, L.J. Kennedy, J.J. Vijaya, Photocatalytic degradation of rhodamine B under visible light using nanostructured zinc doped cobalt ferrite: kinetics and mechanism. Ceram. Int. 43, 540–548 (2017)

    Article  CAS  Google Scholar 

  26. J.N. Pendleton, S.P. Gorman, B.F. Gilmore, Clinical relevance of the ESKAPE pathogens. Expert Rev. Anti Infect. Ther. 11, 297–308 (2013)

    Article  CAS  Google Scholar 

  27. A. Azam, A.S. Ahmed, M. Oves, M.S. Khan, S.S. Habib, A. Memic, Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. Int. J. Nanomed. 7, 6003 (2012)

    Article  CAS  Google Scholar 

  28. S. Baturay, A. Tombak, D. Kaya, Y.S. Ocak, M. Tokus, M. Aydemir, T. Kilicoglu, Modification of electrical and optical properties of CuO thin films by Ni doping. J. Sol-Gel. Sci. Technol. 78, 422–429 (2016)

    Article  CAS  Google Scholar 

  29. Y. Lv, L. Li, P. Yin, T. Lei, Synthesis and evaluation of the structural and antibacterial properties of doped copper oxide. Dalton Trans. 49, 4699–4709 (2020)

    Article  CAS  Google Scholar 

  30. L.M. Dwivedi, N. Shukla, K. Baranwal, S. Gupta, S. Siddique, V. Singh, Gum Acacia modified Ni doped CuO nanoparticles: an excellent antibacterial material. J. Cluster Sci. 32, 209–219 (2021)

    Article  CAS  Google Scholar 

  31. D. Papadaki, G.H. Mhlongo, D.E. Motaung, S.S. Nkosi, K. Panagiotaki, E. Christaki, M.N. Assimakopoulos, V.C. Papadimitriou, F. Rosei, G. Kiriakidis, Hierarchically porous Cu-, Co-, and Mn-doped platelet-like ZnO nanostructures and their photocatalytic performance for indoor air quality control. ACS Omega 4, 16429–16440 (2019)

    Article  CAS  Google Scholar 

  32. R. Veeralekshmi, K. Madhu, Studies on magnetic behavior of manganese doped CuO–CuS nanocomposites (2018)

  33. S. Chaki, J. Tailor, M. Deshpande, Synthesis and characterizations of undoped and Mn doped CuS nanoparticles. Adv. Sci. Lett. 20, 959–965 (2014)

    Article  Google Scholar 

  34. H.R. Bitraa, A. Raoa, A. Kumarb, G. Raoc, Investigation of low temperature dielectric properties of manganese doped-copper oxide nanoparticles by coprecipitation method. Digest J. Nanomater. Biostruct. 16, 1173 (2021)

    Google Scholar 

  35. M. Khan, M. Hasan, K. Bhatti, H. Rizvi, A. Wahab, S.-U. Rehman, M.J. Afzal, A. Nazneen, A. Nazir, M. Iqbal, Effect of Ni doping on the structural, optical and photocatalytic activity of MoS2, prepared by Hydrothermal method. Mater. Res. Express 7, 015061 (2020)

    Article  CAS  Google Scholar 

  36. M.Y. Ali, M. Khan, A.T. Karim, M.M. Rahman, M. Kamruzzaman, Effect of Ni doping on structure, morphology and opto-transport properties of spray pyrolised ZnO nano-fiber. Heliyon 6, e03588 (2020)

    Article  CAS  Google Scholar 

  37. J. Iqbal, T. Jan, S. Ul-Hassan, I. Ahmed, Q. Mansoor, M. Umair Ali, F. Abbas, M. Ismail, Facile synthesis of Zn doped CuO hierarchical nanostructures: structural, optical and antibacterial properties. Aip Adv. 5, 127112 (2015)

    Article  Google Scholar 

  38. R. Jacob, J. Isac, X-ray diffraction line profile analysis of Ba0.6Sr0.4FexTi(1–x)O3-δ, (x= 0.4). Int. J. Chem. Stud. 2, 12–21 (2015)

    Google Scholar 

  39. C. Wagner, E. Aqua, Analysis of the broadening of powder pattern peaks from cold-worked face-centered and body-centered cubic metals. Adv. X-Ray Anal. 7, 46–65 (1963)

    Google Scholar 

  40. D. Gao, G. Yang, J. Li, J. Zhang, J. Zhang, D. Xue, Room-temperature ferromagnetism of flowerlike CuO nanostructures. J. Phys. Chem. C 114, 18347–18351 (2010)

    Article  CAS  Google Scholar 

  41. T. Jan, J. Iqbal, U. Farooq, A. Gul, R. Abbasi, I. Ahmad, M. Malik, Structural, Raman and optical characteristics of Sn doped CuO nanostructures: a novel anticancer agent. Ceram. Int. 41, 13074–13079 (2015)

    Article  CAS  Google Scholar 

  42. J.C. Espinosa, P. Manickam-Periyaraman, F. Bernat-Quesada, S. Sivanesan, M. Álvaro, H. García, S. Navalón, Engineering of activated carbon surface to enhance the catalytic activity of supported cobalt oxide nanoparticles in peroxymonosulfate activation. Appl. Catal. B 249, 42–53 (2019)

    Article  CAS  Google Scholar 

  43. M. Rashad, M. Rüsing, G. Berth, K. Lischka, A. Pawlis, CuO and Co3O4 nanoparticles: synthesis, characterizations, and Raman spectroscopy. J. Nanomater. 2013, 82 (2013)

    Article  Google Scholar 

  44. H.C. Choi, Y.M. Jung, S.B. Kim, Size effects in the Raman spectra of TiO2 nanoparticles. Vib. Spectrosc. 37, 33–38 (2005)

    Article  CAS  Google Scholar 

  45. T. Jiang, J. Kong, Y. Wang, D. Meng, D. Wang, M. Yu, Optical and Photocatalytic properties of Mn-doped CuO nanosheets prepared by hydrothermal method. Cryst. Res. Technol. 51, 58–64 (2016)

    Article  CAS  Google Scholar 

  46. L. Arun, C. Karthikeyan, D. Philip, D. Dhayanithi, N. Giridharan, C. Unni, Influence of transition metal ion Ni2+ on optical, electrical, magnetic and antibacterial properties of phyto-synthesized CuO nanostructure. Opt. Quant. Electron. 50, 1–19 (2018)

    Article  CAS  Google Scholar 

  47. J. Yang, W. Yin, B. Zhou, A. Cui, L. Xu, D. Zhang, W. Li, Z. Hu, J. Chu, Composition dependence of optical properties and band structures in p-type Ni-doped CuO films: spectroscopic experiment and first-principles calculation. J. Phys. Chem. C 123, 27165–27171 (2019)

    Article  CAS  Google Scholar 

  48. B. Pal, D. Sarkar, P. Giri, Structural, optical, and magnetic properties of Ni doped ZnO nanoparticles: correlation of magnetic moment with defect density. Appl. Surf. Sci. 356, 804–811 (2015)

    Article  CAS  Google Scholar 

  49. P. Zhang, X. Jian, J. Tan, Y. Ran, G. Zhang, Ag/AgBr coupled low crystalline Nb2O5 as an effective photocatalyst for the degradation of rhodamine B. J. Mater. Res. 35, 1692–1702 (2020)

    Article  CAS  Google Scholar 

  50. N.M. Basith, J.J. Vijaya, L.J. Kennedy, M. Bououdina, Structural, morphological, optical, and magnetic properties of Ni-doped CuO nanostructures prepared by a rapid microwave combustion method. Mater. Sci. Semicond. Process. 17, 110–118 (2014)

    Article  CAS  Google Scholar 

  51. N.M. Basith, J.J. Vijaya, L.J. Kennedy, M. Bououdina, S. Hussain, Optical and magnetic properties of co-doped CuO flower/plates/particles-like nanostructures. J. Nanosci. Nanotechnol. 14, 2577–2583 (2014)

    Article  CAS  Google Scholar 

  52. Y. Hong, J.W. Lam, B.Z. Tang, Aggregation-induced emission: phenomenon, mechanism and applications. Chem. Commun. (2009). https://doi.org/10.1039/B904665H

    Article  Google Scholar 

  53. V. Ponnarasan, A. Krishnan, Synthesis, structural and optical properties of cobalt doped CuO nanoparticles. Int. J. Nanosci. 16, 1650031 (2017)

    Article  CAS  Google Scholar 

  54. S. Ramya, G. Viruthagiri, R. Gobi, N. Shanmugam, N. Kannadasan, Synthesis and characterization of Ni2+ ions incorporated CuO nanoparticles and its application in antibacterial activity. J. Mater. Sci.: Mater. Electron. 27, 2701–2711 (2016)

    CAS  Google Scholar 

  55. W. Zhang, Z. Yang, X. Wang, Y. Zhang, X. Wen, S. Yang, Large-scale synthesis of β-MnO2 nanorods and their rapid and efficient catalytic oxidation of methylene blue dye. Catal. Commun. 7, 408–412 (2006)

    Article  Google Scholar 

  56. M. Iqbal, A.A. Thebo, A.H. Shah, A. Iqbal, K.H. Thebo, S. Phulpoto, M.A. Mohsin, Influence of Mn-doping on the photocatalytic and solar cell efficiency of CuO nanowires. Inorg. Chem. Commun. 76, 71–76 (2017)

    Article  CAS  Google Scholar 

  57. V. Kumari, S. Yadav, J. Jindal, S. Sharma, K. Kumari, N. Kumar, Synthesis and characterization of heterogeneous ZnO/CuO hierarchical nanostructures for photocatalytic degradation of organic pollutant. Adv. Powder Technol. 31, 2658–2668 (2020)

    Article  CAS  Google Scholar 

  58. P. Vomáčka, V. Štengl, J. Henych, M. Kormunda, Shape-controlled synthesis of Sn-doped CuO nanoparticles for catalytic degradation of Rhodamine B. J. Colloid Interface Sci. 481, 28–38 (2016)

    Article  Google Scholar 

  59. S.J. Singh, P. Chinnamuthu, Highly efficient natural-sunlight-driven photodegradation of organic dyes with combustion derived Ce-doped CuO nanoparticles. Colloids Surf. A 625, 126864 (2021)

    Article  CAS  Google Scholar 

  60. N.-F. Chen, Y.-H. Liao, P.-Y. Lin, W.-F. Chen, Z.-H. Wen, S. Hsieh, Investigation of the characteristics and antibacterial activity of polymer-modified copper oxide nanoparticles. Int. J. Mol. Sci. 22, 12913 (2021)

    Article  CAS  Google Scholar 

  61. Y. Abboud, T. Saffaj, A. Chagraoui, A. El Bouari, K. Brouzi, O. Tanane, B. Ihssane, Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Appl. Nanosci. 4, 571–576 (2014)

    Article  CAS  Google Scholar 

  62. K. Thongsuriwong, P. Amornpitoksuk, S. Suwanboon, Photocatalytic and antibacterial activities of Ag-doped ZnO thin films prepared by a sol–gel dip-coating method. J. Sol-Gel. Sci. Technol. 62, 304–312 (2012)

    Article  CAS  Google Scholar 

  63. T. Theivasanthi, M. Alagar, Studies of copper nanoparticles effects on micro-organisms. https://arXiv.org/1110.1372 (2011)

  64. A.A. Abass, Evaluating the antibacterial effect of cobalt nanoparticles against multi-drug resistant pathogens. J. Med. Life 14, 823 (2021)

    Article  Google Scholar 

  65. G. Satpathy, E. Manikandan, Cobalt nanoparticle as the antibacterial tool in vitro. Int. J. Eng. Adv. Technol. 8, 3684–3687 (2019)

    Article  Google Scholar 

  66. L. Antunes, P. Visca, K.J. Towner, Acinetobacter baumannii: evolution of a global pathogen. Pathog. Dis. 71, 292–301 (2014)

    Article  CAS  Google Scholar 

  67. C.R. Dhas, D. Arivukarasan, R. Venkatesh, A.J. Josephine, K.M.G. Malar, S.E.S. Monica, B. Subramanian, Influence of precursor aging time period on physical and photocatalytic properties of nebulizer spray coated BiVO4 thin films. Solid State Sci. 92, 36–45 (2019)

    Article  CAS  Google Scholar 

  68. C.R. Dhas, K. Malar, R. Venkatesh, D. Arivukarasan, S. Monica, S. Keerthana, Insights on photocatalytic dye inactivation and antimicrobial activity of pH-dependent facile synthesised copper oxide nanoparticles. Appl. Phys. A 127, 1–11 (2021)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to record their sincere thanks to the University Grants Commission, New Delhi for providing financial support through Minor Research Project Scheme (MRP) [F.no.MRP-5809/15(SERO)/UGC].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ravi Dhas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malar, K.C.M.G., Titlin, M.B.A., Venkatesh, R. et al. Versatile effects of transition metal-doped copper oxide nanoparticles on the efficacy of photocatalytic and antimicrobial activity. Journal of Materials Research 37, 4045–4058 (2022). https://doi.org/10.1557/s43578-022-00762-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00762-4

Keywords

Navigation