Skip to main content
Log in

Geometrical size effect on tensile properties of ultrathin current collector foils for lithium-ion batteries

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Mechanical properties of the current collector foils are of great urgency to the reliability design and security assessment of high-performance lithium-ion batteries, but non-standard specimens with different dimensions and geometries have been frequently used to evaluate the properties of materials. Here, we investigated the effects of specimen dimensions on the mechanical properties of current collector Al and Cu foils with different gauge lengths and widths by using the digital image correlation technique. Our results revealed that the wider specimens and shorter gauge lengths tended to have higher total elongation. A widely cited Oliver formula and a new probabilistic model for crack nucleation were proposed to describe the geometrical size-dependent elongation. The proposed models have been proved to be in excellent agreement with the present metal foils and the reported ones.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

The raw data related to this manuscript will be available from the corresponding authors upon request.

References

  1. P. Zhu, D. Gastol, J. Marshall, R. Sommerville, V. Goodship, E. Kendrick, J. Power Sources 485, 229321 (2021)

    Article  CAS  Google Scholar 

  2. Y. Liu, D. Gao, H. Xiang, X. Feng, Y. Yu, Energy Fuels 35, 12921–12937 (2021)

    Article  CAS  Google Scholar 

  3. Standard Test Methods of Tension Testing of Metallic Foil, ASTM E345–16, (2016)

  4. Z. Pan, T. Sedlatschek, Y. Xia, J. Electrochem. Soc. 167, 090517 (2020)

    Article  CAS  Google Scholar 

  5. C. Dai, Z. Wang, K. Liu, X. Zhu, X. Liao, X. Chen, Y. Pan, Eng. Failure Anal. 101, 193–205 (2019)

    Article  CAS  Google Scholar 

  6. L. Wang, S. Yin, C. Zhang, Y. Huan, J. Xu, J. Power Sources 392, 265–273 (2018)

    Article  CAS  Google Scholar 

  7. C. Bonatti, D. Mohr, Mater. Sci. Eng. A 654, 329–343 (2016)

    Article  CAS  Google Scholar 

  8. J. Zhu, J. Feng, Z. Guo, RSC Adv. 4, 57671–57678 (2014)

    Article  CAS  Google Scholar 

  9. R. Tao, Z. Liang, S. Zhu, L. Yang, L. Ma, W.L. Song, H. Chen, Acta Mech. Solida Sin. 34, 297–306 (2021)

    Article  Google Scholar 

  10. W.J. Yuan, Z.L. Zhang, Y.J. Su, L.J. Qiao, W.Y. Chu, Mater. Sci. Eng. A 532, 601–605 (2012)

    Article  CAS  Google Scholar 

  11. W.K. Yang, L.Y. Wang, Z.M. Song, X.M. Luo, G.P. Zhang, Steel Res. Int. 92, 2000685 (2021)

    Article  CAS  Google Scholar 

  12. Y. Zhao, Y. Guo, Q. Wei, A. Dangelewicz, C. Xu, Y. Zhu, T. Langdon, Y. Zhou, E. Lavernia, Scr. Mater. 59, 627–630 (2008)

    Article  CAS  Google Scholar 

  13. W.J. Yuan, F. Zhou, Z.L. Zhang, Y.J. Su, L.J. Qiao, W.Y. Chu, Mater. Sci. Eng. A 561, 183–190 (2013)

    Article  CAS  Google Scholar 

  14. D. Kiener, W. Grosinger, G. Dehm, R. Pippan, Acta Mater. 56, 580–592 (2008)

    Article  CAS  Google Scholar 

  15. M. Klein, A. Hadrboletz, B. Weiss, G. Khatibi, Mater. Sci. Eng. A 319, 924–928 (2001)

    Article  Google Scholar 

  16. H.D. Espinosa, B.C. Prorok, B. Peng, J. Mech. Phys. Solids 52, 667–689 (2004)

    Article  CAS  Google Scholar 

  17. G. Simons, C. Weippert, J. Dual, J. Villain, Mater. Sci. Eng. A 416, 290–299 (2006)

    Article  Google Scholar 

  18. Y. Yang, N. Yao, W.O. Soboyejo, C. Tarquinio, Scr. Mater. 58, 1062–1065 (2008)

    Article  CAS  Google Scholar 

  19. N.A. Fleck, J.W. Hutchinson, Adv. Appl. Mech. 33, 295–361 (1997)

    Article  Google Scholar 

  20. M. Lederer, V. Gröger, G. Khatibi, B. Weiss, Mater. Sci. Eng. A 527, 590–599 (2010)

    Article  Google Scholar 

  21. G. Simons, C. Weippert, J. Dual, R. Villain, Iutam symposium on multiscale modeling and characterization of elastic-inelastic behavior of engineering materials (proceedings, Morocco, 2004), pp. 89–96

  22. S. Guo, Y. He, J. Lei, Z. Li, D. Liu, Scr. Mater. 130, 124–127 (2017)

    Article  CAS  Google Scholar 

  23. X.X. Chen, A.H.W. Ngan, Scr. Mater. 64, 717–720 (2011)

    Article  CAS  Google Scholar 

  24. K.J.H.H.S. Cho, K. Lian, J. Goettert, G. Dirras, Sens. Actuators, A 103, 59–63 (2003)

    Article  CAS  Google Scholar 

  25. J. Zhou, D.B. Shan, B. Guo, D.L. Ma, Key Eng. Mater. 344, 777–782 (2007)

    Article  CAS  Google Scholar 

  26. A.V. Sergueeva, J. Zhou, B.E. Meacham, D.J. Branagan, Mater. Sci. Eng. A 526, 79–83 (2009)

    Article  Google Scholar 

  27. I.S. Yasnikov, A. Vinogradov, Y. Estrin, Scr. Mater. 76, 37–40 (2014)

    Article  CAS  Google Scholar 

  28. X.X. Huang, N. Hansen, N. Tsuji, Science 312, 249–251 (2006)

    Article  CAS  Google Scholar 

  29. S. Cheng, E. Ma, Y. Wang, L. Kecskes, K. Youssef, C. Koch, U. Trociewitz, K. Han, Acta Mater. 53, 1521–1533 (2005)

    Article  CAS  Google Scholar 

  30. C.Y. Dai, B. Zhang, J. Xu, G.P. Zhang, Mater. Sci. Eng. A 575, 217–222 (2013)

    Article  CAS  Google Scholar 

  31. N. Tsuji, Y. Ito, Y. Saito, Y. Minamino, Scr. Mater. 47, 893–899 (2002)

    Article  CAS  Google Scholar 

  32. Y.H. Zhao, J.E. Bingert, X.Z. Liao, B.Z. Cui, K. Han, A.V. Sergueeva, A.K. Mukherjee, R.Z. Valiev, T.G. Langdon, Y.T.T. Zhu, Adv. Mater. 18, 2949–2953 (2006)

    Article  CAS  Google Scholar 

  33. D. Terada, H. Houda, N. Tsuji, J. Mater. Sci. 43, 7331–7337 (2008)

    Article  CAS  Google Scholar 

  34. F. Tang, J.M. Schoenung, Mater. Sci. Eng. A 493, 101–103 (2008)

    Article  Google Scholar 

  35. S. Billard, J.P. Fondere, B. Bacroix, G.F. Dirras, Acta Mater. 54, 411–421 (2006)

    Article  CAS  Google Scholar 

  36. S. Hariprasad, S.M.L. Sastry, K.L. Jerina, Acta Mater. 44, 383–389 (1996)

    Article  CAS  Google Scholar 

  37. J.A. Wert, X.X. Huang, G. Winther, W. Pantleon, H.F. Poulsen, Mater. Today 10, 24–32 (2007)

    Article  CAS  Google Scholar 

  38. K. Edalati, A. Bachmaier, V.A. Beloshenko, Y. Beygelzimer, V.D. Blank, W.J. Botta, K. Bryla, J. Cizek, S. Divinski, N.A. Enikeev, Y. Estrin, G. Faraji, R.B. Figueiredo, M. Fuji, T. Furuta, T. Grosdidier, J. Gubicza, A. Hohenwarter, Z. Horita, J. Huot, Y. Ikoma, M. Janecek, M. Kawasaki, P. Kral, S. Kuramoto, T.G. Langdon, D.R. Leiva, V.I. Levitas, A. Mazilkin, M. Mito, H. Miyamoto, T. Nishizaki, R. Pippan, V.V. Popov, E.N. Popova, G. Purcek, O. Renk, A. Revesz, X. Sauvage, V. Sklenicka, W. Skrotzki, B.B. Straumal, S. Suwas, L.S. Toth, N. Tsuji, R.Z. Valiev, G. Wilde, M.J. Zehetbauer, X. Zhu, Mater. Res. Lett. 10, 163–256 (2022)

    Article  CAS  Google Scholar 

  39. Z.S. You, L. Lu, K. Lu, Acta Mater 59, 6927–6937 (2011)

    Article  CAS  Google Scholar 

  40. L. Zhu, H. Ruan, X. Li, M. Dao, H. Gao, J. Lu, Acta Mater 59, 5544–5557 (2011)

    Article  CAS  Google Scholar 

  41. X.Y. Li, Y. Wei, L. Lu, K. Lu, H. Gao, Nature 464, 877–880 (2010)

    Article  CAS  Google Scholar 

  42. L. Lu, X. Chen, X. Huang, K. Lu, Science 323, 607–610 (2009)

    Article  CAS  Google Scholar 

  43. Y. Cao, S. Ni, X.Z. Liao, M. Song, Y.T. Zhu, Mater. Sci. Eng. R 133, 1–59 (2018)

    Article  Google Scholar 

  44. G.I. Taylor, Proc. R. Soc. Lond. A 145, 362–387 (1934)

    Article  CAS  Google Scholar 

  45. Y.H. Zhao, Y.Z. Guo, Q. Wei, T.D. Topping, A.M. Dangelewicz, Y.T. Zhu, T.G. Langdon, E.J. Lavernia, Mater. Sci. Eng. A 525, 68–77 (2009)

    Article  Google Scholar 

  46. R.Z. Valiev, Y. Zhu, J. Trans, Mat. Res. Soc. Jpn. 40, 309–318 (2015)

    Article  Google Scholar 

  47. D.N. Hanlon, S.M.C. van Bohemen, S. Celotto, Mater. Sci. Technol. 31, 385–388 (2015)

    Article  CAS  Google Scholar 

  48. D.A. Oliver, Proc. Inst. Mech. Eng. 2, 827–864 (1928)

    Article  Google Scholar 

  49. P. Zheng, R. Chen, H. Liu, J. Chen, Z. Zhang, X. Liu, Y. Shen, Fusion Eng. Des. 161, 112006 (2020)

    Article  CAS  Google Scholar 

  50. L.S. Moura, G.D. Vittoria, A.H.G. Gabriel, E.B. Fonseca, L.P. Gabriel, T.J. Webster, É.S.N. Lopes, J. Mater. Sci. 55, 9578–9596 (2020)

    Article  CAS  Google Scholar 

  51. X. Chen, Y. Li, X. Han, J. Zhang, J. Mater. Eng. Perform. 27, 640–647 (2018)

    Article  CAS  Google Scholar 

  52. F. Wang, Phys. Exam. Test. 33, 17–20 (2015)

    Google Scholar 

  53. L. Peng, X. Lai, H.-J. Lee, J.-H. Song, J. Ni, Mater. Sci. Eng. A 526, 93–99 (2009)

    Article  Google Scholar 

  54. T. Furushima, H. Tsunezaki, K.I. Manabe, S. Alexsandrov, Int. J. Mach. Tool. Manu. 76, 34–48 (2014)

    Article  Google Scholar 

  55. J.G. Liu, M.W. Fu, J. Lu, W.L. Chan, Comput. Mater. Sci. 50, 2604–2614 (2011)

    Article  CAS  Google Scholar 

  56. A.H.M. Klein, B. Weiss, G. Khatibi, Mater. Sci. Eng. A 319–321, 924–928 (2001)

    Article  Google Scholar 

  57. A. Diehl, U. Engel, M. Geiger, Int. J Adv. Manuf. Tech. 47, 53–61 (2008)

    Article  Google Scholar 

  58. H.Z. Li, X.H. Dong, Y. Shen, R. Zhou, A. Diehl, H. Hagenah, U. Engel, M. Merklein, J. Cao, J. Mater. Process. Technol. 212, 653–661 (2012)

    Article  CAS  Google Scholar 

  59. S. Lavenstein, Y. Gu, D. Madisetti, J.A. El-Awady, Science (2020). https://doi.org/10.1126/science.abb2690

    Article  Google Scholar 

  60. L. Yang, L. Lu, Scr. Mater. 69, 242–245 (2013)

    Article  CAS  Google Scholar 

  61. J.K. Hwang, Mater. Sci. Eng. A 763, 138119 (2019)

    Article  CAS  Google Scholar 

  62. H. Wang, E. Lara-Curzio, E.T. Rule, C.S. Winchester, J. Power Sources 342, 913–920 (2017)

    Article  CAS  Google Scholar 

  63. E. Sahraei, J. Campbell, T. Wierzbicki, J. Power Sources 220, 360–372 (2012)

    Article  CAS  Google Scholar 

  64. H. Wang, D.N. Leonard, H.M. Meyer, T.R. Watkins, S. Kalnaus, S. Simunovic, S. Allu, J.A. Turner, Mater. Today Energy 17, 100479 (2020)

    Article  Google Scholar 

  65. H. Wang, T.R. Watkins, S. Simunovic, P.R. Bingham, S. Allu, J.A. Turner, J. Power Sources 364, 432–436 (2017)

    Article  CAS  Google Scholar 

  66. J. Lamb, C.J. Orendorff, J. Power Sources 247, 189–196 (2014)

    Article  CAS  Google Scholar 

  67. Aluminium and Aluminium Alloy Foil for Lithium Ion Batteries, GB/T 33143 (2016)

  68. Electrodeposited Copper Foil for Lithium Ion Battery, SJ/T 11483 (2014)

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC, Grant No. 52071319) and the Fundamental Research Project of Shenyang National Laboratory for Materials Science (L2019F23).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue-Mei Luo or Guang-Ping Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3240 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, FL., Yang, WK., Luo, XM. et al. Geometrical size effect on tensile properties of ultrathin current collector foils for lithium-ion batteries. Journal of Materials Research 37, 3708–3719 (2022). https://doi.org/10.1557/s43578-022-00745-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00745-5

Keywords

Navigation