Skip to main content
Log in

Optimizing thermal stability and mechanical behavior in segregation-engineered nanocrystalline Al–Ni–Ce alloys: A combinatorial study

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The deliberate use of solute enrichment at grain boundaries, otherwise known as segregation engineering, is a promising approach to tailor the properties of interface-dominated materials such as nanocrystalline alloys. The ensuing chemical and structural evolution at grain boundaries can give rise to thermal stability and excellent mechanical properties, but the interplay between enrichment, phase decomposition, grain growth, and mechanical behavior exists in a vast composition and processing space. In this study, a combinatorial synthesis and rapid characterization approach was applied to segregation-engineered nanocrystalline Al–Ni–Ce alloys to assess the evolution of microstructure and resulting mechanical behavior as functions of alloying content and annealing conditions. In addition to the identification of alloys and processing conditions that give rise to exceptional thermal stability, strength retention, and homogeneous plastic flow, we construct combined thermal stability and deformation mechanism maps that demarcate several important regimes of behavior.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

Code availability

Not applicable.

References

  1. D. Raabe, M. Herbig, S. Sandlöbes, Y. Li, D. Tytko, M. Kuzmina, D. Ponge, P.-P. Choi, Grain boundary segregation engineering in metallic alloys: A pathway to the design of interfaces. Curr. Opin. Solid State Mater. Sci. 18, 253–261 (2014). https://doi.org/10.1016/J.COSSMS.2014.06.002

    Article  CAS  Google Scholar 

  2. T.J. Rupert, The role of complexions in metallic nano-grain stability and deformation. Curr. Opin. Solid State Mater. Sci. 20, 257–267 (2016). https://doi.org/10.1016/J.COSSMS.2016.05.005

    Article  CAS  Google Scholar 

  3. T.J. Rupert, D.S. Gianola, Y. Gan, K.J. Hemker, Experimental observations of stress-driven grain boundary migration. Science 326, 1686–1690 (2009)

    Article  CAS  Google Scholar 

  4. M.-R. He, S.K. Samudrala, G. Kim, P.J. Felfer, A.J. Breen, J.M.C. Cairney, D.S. Gianola, J.M.C. Cairney, Linking stress-driven microstructural evolution in nanocrystalline aluminium with grain boundary doping of oxygen. Nat Commun 7, 1–7 (2016). https://doi.org/10.1038/pj.2016.37

    Article  CAS  Google Scholar 

  5. R.I. Babicheva, S.V. Dmitriev, L. Bai, Y. Zhang, S.W. Kok, G. Kang, K. Zhou, Effect of grain boundary segregation on the deformation mechanisms and mechanical properties of nanocrystalline binary aluminum alloys. Comput. Mater. Sci. 117, 445–454 (2016). https://doi.org/10.1016/j.commatsci.2016.02.013

    Article  CAS  Google Scholar 

  6. H.A. Murdoch, C.A. Schuh, Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design. J. Mater. Res. 28, 2154–2163 (2019). https://doi.org/10.1557/jmr.2013.211

    Article  CAS  Google Scholar 

  7. J.F. Nie, Y.M. Zhu, J.Z. Liu, X.Y. Fang, Periodic segregation of solute atoms in fully coherent twin boundaries. Science 340, 957–960 (2013). https://doi.org/10.1126/science.1229369

    Article  CAS  Google Scholar 

  8. A. Devaraj, W. Wang, R. Vemuri, L. Kovarik, X. Jiang, M. Bowden, J.R.R. Trelewicz, S. Mathaudhu, A. Rohatgi, Grain boundary segregation and intermetallic precipitation in coarsening resistant nanocrystalline aluminum alloys. Acta Mater. 165, 698–708 (2019). https://doi.org/10.1016/j.actamat.2018.09.038

    Article  CAS  Google Scholar 

  9. K.A. Darling, M. Rajagopalan, M. Komarasamy, M.A. Bhatia, B.C. Hornbuckle, R.S. Mishra, K.N. Solanki, Extreme creep resistance in a microstructurally stable nanocrystalline alloy. Nature 537, 378–381 (2016). https://doi.org/10.1038/nature19313

    Article  CAS  Google Scholar 

  10. T. Frolov, K.A. Darling, L.J. Kecskes, Y. Mishin, Stabilization and strengthening of nanocrystalline copper by alloying with tantalum. Acta Mater. 60, 2158–2168 (2012). https://doi.org/10.1016/J.ACTAMAT.2012.01.011

    Article  CAS  Google Scholar 

  11. C.C. Koch, R.O. Scattergood, K.A. Darling, J.E. Semones, Stabilization of nanocrystalline grain sizes by solute additions. J. Mater. Sci. 43, 7264–7272 (2008). https://doi.org/10.1007/s10853-008-2870-0

    Article  CAS  Google Scholar 

  12. K.A. Darling, B.K. VanLeeuwen, C.C. Koch, R.O. Scattergood, Thermal stability of nanocrystalline Fe-Zr alloys. Mater. Sci. Eng. A 527, 3572–3580 (2010). https://doi.org/10.1016/j.msea.2010.02.043

    Article  CAS  Google Scholar 

  13. Y. Hu, T.J. Rupert, Atomistic modeling of interfacial segregation and structural transitions in ternary alloys. J. Mater. Sci. 54, 3975–3993 (2019). https://doi.org/10.1007/s10853-018-3139-x

    Article  CAS  Google Scholar 

  14. W. Xing, A.R. Kalidindi, D. Amram, C.A. Schuh, Solute interaction effects on grain boundary segregation in ternary alloys. Acta Mater. 161, 285–294 (2018). https://doi.org/10.1016/j.actamat.2018.09.005

    Article  CAS  Google Scholar 

  15. A.L. Vasiliev, M. Aindow, M.J. Blackburn, T.J. Watson, Phase stability and microstructure in devitrified Al-rich Al-Y-Ni alloys. Intermetallics 12, 349–362 (2004). https://doi.org/10.1016/j.intermet.2003.11.007

    Article  CAS  Google Scholar 

  16. Y.H. Gao, L.F. Cao, J. Kuang, H. Song, G. Liu, J.Y. Zhang, J. Sun, Solute repositioning to tune the multiple microalloying effects in an Al–Cu alloy with minor Sc, Fe and Si addition. Mater. Sci. Eng. A 803, 140509 (2021). https://doi.org/10.1016/j.msea.2020.140509

    Article  CAS  Google Scholar 

  17. C.M. Grigorian, T.J. Rupert, Thick amorphous complexion formation and extreme thermal stability in ternary nanocrystalline Cu-Zr-Hf alloys. Acta Mater. 179, 172–182 (2019)

    Article  CAS  Google Scholar 

  18. J.D. Schuler, T.J. Rupert, Materials selection rules for amorphous complexion formation in binary metallic alloys. Acta Mater. 140, 196–205 (2017)

    Article  CAS  Google Scholar 

  19. A. Khalajhedayati, T.J. Rupert, High-temperature stability and grain boundary complexion formation in a nanocrystalline Cu-Zr alloy. JOM 67, 2788–2801 (2015). https://doi.org/10.1007/s11837-015-1644-9

    Article  CAS  Google Scholar 

  20. G.H. Balbus, F. Wang, D.S. Gianola, Suppression of shear localization in nanocrystalline Al–Ni–Ce via segregation engineering. Acta Mater. 188, 63–78 (2020). https://doi.org/10.1016/j.actamat.2020.01.041

    Article  CAS  Google Scholar 

  21. G.H. Balbus, J. Kappacher, D.J. Sprouster, F. Wang, J. Shin, Y.M. Eggeler, T.J. Rupert, J.R. Trelewicz, D. Kiener, V. Maier-Kiener, D.S. Gianola, Disordered interfaces enable high temperature thermal stability and strength in a nanocrystalline aluminum alloy. Acta Mater. (2021). https://doi.org/10.1016/j.actamat.2021.116973

    Article  Google Scholar 

  22. F. Liu, R. Kirchheim, Nano-scale grain growth inhibited by reducing grain boundary energy through solute segregation. J. Cryst. Growth 264, 385–391 (2004). https://doi.org/10.1016/j.jcrysgro.2003.12.021

    Article  CAS  Google Scholar 

  23. R. Kirchheim, Grain coarsening inhibited by solute segregation. Acta Mater. 50, 413–419 (2002). https://doi.org/10.1016/S1359-6454(01)00338-X

    Article  CAS  Google Scholar 

  24. J. Weissmüller, Alloy effects in nanostructures. Nanostruct. Mater. 3, 261–272 (1993). https://doi.org/10.1016/0965-9773(93)90088-S

    Article  Google Scholar 

  25. T. Chookajorn, H.A. Murdoch, C.A. Schuh, Design of stable nanocrystalline alloys. Science 337, 951–954 (2012). https://doi.org/10.1126/science.1224737

    Article  CAS  Google Scholar 

  26. J.R. Trelewicz, C.A. Schuh, Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys. Phys. Rev. 79, 094112 (2009). https://doi.org/10.1103/PhysRevB.79.094112

    Article  CAS  Google Scholar 

  27. C.E. Krill III., R. Klein, S. Janes, R. Birringer, Thermodynamic stabilization of grain boundaries in nanocrystalline alloys. Mater. Sci. Forum 179–181, 443–448 (1995). https://doi.org/10.4028/www.scientific.net/MSF.179-181.443

    Article  Google Scholar 

  28. M. Saber, H. Kotan, C.C. Koch, R.O. Scattergood, Thermodynamic stabilization of nanocrystalline binary alloys. J. Appl. Phys. 113, 063515 (2013). https://doi.org/10.1063/1.4791704

    Article  CAS  Google Scholar 

  29. K.A. Darling, M.A. Tschopp, R.K. Guduru, W.H. Yin, Q. Wei, L.J. Kecskes, Microstructure and mechanical properties of bulk nanostructured Cu–Ta alloys consolidated by equal channel angular extrusion. Acta Mater. 76, 168–185 (2014). https://doi.org/10.1016/J.ACTAMAT.2014.04.074

    Article  CAS  Google Scholar 

  30. A. Michels, C.E. Krill, H. Ehrhardt, R. Birringer, D.T. Wu, Modelling the influence of grain-size-dependent solute drag on the kinetics of grain growth in nanocrystalline materials. Acta Mater. 47, 2143–2152 (1999). https://doi.org/10.1016/S1359-6454(99)00079-8

    Article  CAS  Google Scholar 

  31. M. Rajagopalan, K. Darling, S. Turnage, R.K. Koju, B. Hornbuckle, Y. Mishin, K.N. Solanki, Microstructural evolution in a nanocrystalline Cu-Ta alloy: A combined in-situ TEM and atomistic study. Mater. Des. 113, 178–185 (2017). https://doi.org/10.1016/j.matdes.2016.10.020

    Article  CAS  Google Scholar 

  32. M.A. Atwater, R.O. Scattergood, C.C. Koch, The stabilization of nanocrystalline copper by zirconium. Mater. Sci. Eng.: A 559, 250–256 (2013). https://doi.org/10.1016/j.msea.2012.08.092

    Article  CAS  Google Scholar 

  33. R.K. Koju, K.A. Darling, K.N. Solanki, Y. Mishin, Atomistic modeling of capillary-driven grain boundary motion in Cu-Ta alloys. Acta Mater. (2018). https://doi.org/10.1016/j.actamat.2018.01.027

    Article  Google Scholar 

  34. P.R. Cantwell, M. Tang, S.J. Dillon, J. Luo, G.S. Rohrer, M.P. Harmer, Grain boundary complexions. Acta Mater. 62, 1–48 (2014). https://doi.org/10.1016/j.actamat.2013.07.037

    Article  CAS  Google Scholar 

  35. S.J. Dillon, M. Tang, W.C. Carter, M.P. Harmer, Complexion: A new concept for kinetic engineering in materials science. Acta Mater. 55, 6208–6218 (2007). https://doi.org/10.1016/J.ACTAMAT.2007.07.029

    Article  CAS  Google Scholar 

  36. J.D. Schuler, O.K. Donaldson, T.J. Rupert, Amorphous complexions enable a new region of high temperature stability in nanocrystalline Ni-W. Scr. Mater. 154, 49–53 (2018). https://doi.org/10.1016/J.SCRIPTAMAT.2018.05.023

    Article  CAS  Google Scholar 

  37. G. Sha, L. Yao, X. Liao, S.P. Ringer, Z.C. Duan, T.G. Langdon, Segregation of solute elements at grain boundaries in an ultrafine grained Al–Zn–Mg–Cu alloy. Ultramicroscopy 111, 500–505 (2011). https://doi.org/10.1016/J.ULTRAMIC.2010.11.013

    Article  CAS  Google Scholar 

  38. M. Hans, P. Keuter, A. Saksena, J.A. Sälker, M. Momma, H. Springer, J. Nowak, D. Zander, D. Primetzhofer, J.M. Schneider, Opportunities of combinatorial thin film materials design for the sustainable development of magnesium-based alloys. Sci. Rep. (2021). https://doi.org/10.1038/s41598-021-97036-6

    Article  Google Scholar 

  39. R. Pei, Y. Zou, D. Wei, T. Al-Samman, Grain boundary co-segregation in magnesium alloys with multiple substitutional elements. Acta Mater. 208, 116749 (2021). https://doi.org/10.1016/j.actamat.2021.116749

    Article  CAS  Google Scholar 

  40. C.Y. Wang, L.W. Yang, Y.W. Cui, M.T. Pérez-Prado, High throughput analysis of solute effects on the mechanical behavior and slip activity of beta titanium alloys. Mater. Des. 137, 371–383 (2018). https://doi.org/10.1016/J.MATDES.2017.10.029

    Article  CAS  Google Scholar 

  41. R. Schoeppner, C. Ferguson, L. Pethö, C. Guerra-Nuñez, A.A. Taylor, M. Polyakov, B. Putz, J.M. Breguet, I. Utke, J. Michler, Interfacial adhesion of alumina thin films over the full compositional range of ternary fcc alloy films: A combinatorial nanoindentation study. Mater. Des. 193, 108802 (2020). https://doi.org/10.1016/j.matdes.2020.108802

    Article  CAS  Google Scholar 

  42. S.-I. Jun, P.D. Rack, T.E. McKnight, A.V. Melechko, M.L. Simpson, Electrical and microstructural characterization of molybdenum tungsten electrodes using a combinatorial thin film sputtering technique. J. Appl. Phys. 97, 054906 (2005). https://doi.org/10.1063/1.1855395

    Article  CAS  Google Scholar 

  43. T. Iwasaki, N. Itagaki, T. Den, H. Kumomi, K. Nomura, T. Kamiya, H. Hosono, Combinatorial approach to thin-film transistors using multicomponent semiconductor channels: An application to amorphous oxide semiconductors in In–Ga–Zn–O system. Appl. Phys. Lett. 90, 242114 (2007). https://doi.org/10.1063/1.2749177

    Article  CAS  Google Scholar 

  44. P. Ziolkowski, M. Wambach, A. Ludwig, E. Mueller, Application of high-throughput seebeck microprobe measurements on thermoelectric half-Heusler thin film combinatorial material libraries. ACS Comb. Sci. 20, 1–18 (2018). https://doi.org/10.1021/acscombsci.7b00019

    Article  CAS  Google Scholar 

  45. R. Collette, Y. Wu, A. Olafsson, J.P. Camden, P.D. Rack, Combinatorial thin film sputtering AuxAl1–x alloys: Correlating composition and structure with optical properties. ACS Comb. Sci. 20, 633–642 (2018). https://doi.org/10.1021/ACSCOMBSCI.8B00091

    Article  CAS  Google Scholar 

  46. A. Ludwig, N. Zotov, A. Savan, S. Groudeva-Zotova, Investigation of hard magnetic properties in the Fe–Pt system by combinatorial deposition of thin film multilayer libraries. Appl. Surf. Sci. 252, 2518–2523 (2006). https://doi.org/10.1016/J.APSUSC.2005.04.058

    Article  CAS  Google Scholar 

  47. A. Marshal, K.G. Pradeep, D. Music, L. Wang, O. Petracic, J.M. Schneider, Combinatorial evaluation of phase formation and magnetic properties of FeMnCoCrAl high entropy alloy thin film library. Sci. Rep. (2019). https://doi.org/10.1038/s41598-019-44351-8

    Article  Google Scholar 

  48. J. Li, F.S. Gittleson, Y. Liu, J. Liu, A.M. Loye, L. McMillon-Brown, T.R. Kyriakides, J. Schroers, A.D. Taylor, Exploring a wider range of Mg–Ca–Zn metallic glass as biocompatible alloys using combinatorial sputtering. Chem. Commun. 53, 8288–8291 (2017). https://doi.org/10.1039/C7CC02733H

    Article  CAS  Google Scholar 

  49. J.M. Gregoire, P.J. McCluskey, D. Dale, S. Ding, J. Schroers, J.J. Vlassak, Combining combinatorial nanocalorimetry and X-ray diffraction techniques to study the effects of composition and quench rate on Au–Cu–Si metallic glasses. Scr. Mater. 66, 178–181 (2012). https://doi.org/10.1016/J.SCRIPTAMAT.2011.10.034

    Article  CAS  Google Scholar 

  50. J.H. Yao, C. Hostert, D. Music, A. Frisk, M. Björck, J.M. Schneider, Synthesis and mechanical properties of Fe–Nb–B thin-film metallic glasses. Scr. Mater. 67, 181–184 (2012). https://doi.org/10.1016/J.SCRIPTAMAT.2012.04.011

    Article  CAS  Google Scholar 

  51. S. Ding, J. Gregoire, J.J. Vlassak, J. Schroers, Solidification of Au-Cu-Si alloys investigated by a combinatorial approach. J. Appl. Phys. 111, 114901 (2012). https://doi.org/10.1063/1.4722996

    Article  CAS  Google Scholar 

  52. A. Marshal, K.G. Pradeep, D. Music, S. Zaefferer, P.S. De, J.M. Schneider, Combinatorial synthesis of high entropy alloys: Introduction of a novel, single phase, body-centered-cubic FeMnCoCrAl solid solution. J. Alloys Compd. 691, 683–689 (2017). https://doi.org/10.1016/J.JALLCOM.2016.08.326

    Article  CAS  Google Scholar 

  53. Z. Li, A. Ludwig, A. Savan, H. Springer, D. Raabe, Combinatorial metallurgical synthesis and processing of high-entropy alloys. J. Mater. Res. 33, 3156–3169 (2018). https://doi.org/10.1557/jmr.2018.214

    Article  CAS  Google Scholar 

  54. S.A. Kube, S. Sohn, D. Uhl, A. Datye, A. Mehta, J. Schroers, Phase selection motifs in high entropy alloys revealed through combinatorial methods: Large atomic size difference favors BCC over FCC. Acta Mater. 166, 677–686 (2019). https://doi.org/10.1016/J.ACTAMAT.2019.01.023

    Article  CAS  Google Scholar 

  55. D.B. Miracle, M. Li, Z. Zhang, R. Mishra, K.M. Flores, Emerging capabilities for the high-throughput characterization of structural materials. Annu. Rev. Mater. Res. 51, 131–164 (2021). https://doi.org/10.1146/ANNUREV-MATSCI-080619-022100

    Article  CAS  Google Scholar 

  56. S.A. Kube, W. Xing, A. Kalidindi, S. Sohn, A. Datye, D. Amram, C.A. Schuh, J. Schroers, Combinatorial study of thermal stability in ternary nanocrystalline alloys. Acta Mater. 188, 40–48 (2020). https://doi.org/10.1016/j.actamat.2020.01.059

    Article  CAS  Google Scholar 

  57. Y.J. Li, A. Kostka, A. Savan, A. Ludwig, Phase decomposition in a nanocrystalline CrCoNi alloy. Scr. Mater. 188, 259–263 (2020). https://doi.org/10.1016/J.SCRIPTAMAT.2020.07.054

    Article  CAS  Google Scholar 

  58. A. Inoue, H. Kimura, Fabrications and mechanical properties of bulk amorphous, nanocrystalline, nanoquasicrystalline alloys in aluminum-based system. J. Light Met. 1, 31–41 (2001). https://doi.org/10.1016/S1471-5317(00)00004-3

    Article  Google Scholar 

  59. C.V. Thompson, R. Carel, Texture development in polycrystalline thin films. Mater. Sci. Eng., B 32, 211–219 (1995). https://doi.org/10.1016/0921-5107(95)03011-5

    Article  CAS  Google Scholar 

  60. R.K. Gupta, B.S. Murty, N. Birbilis, An Overview of High-Energy Ball Milled Nanocrystalline Aluminum Alloys (Springer, Cham, 2017)

    Book  Google Scholar 

  61. L. Ajdelsztajn, B. Jodoin, G.E. Kim, J.M. Schoenung, Cold spray deposition of nanocrystalline aluminum alloys. Metall. Mater. Trans. A 36, 657–666 (2005)

    Article  Google Scholar 

  62. F. Endres, M. Bukowski, R. Hempelmann, H. Natter, Electrodeposition of nanocrystalline metals and alloys from ionic liquids. Angew. Chem. Int. Ed. 42, 3428–3430 (2003). https://doi.org/10.1002/anie.200350912

    Article  CAS  Google Scholar 

  63. C.V. Thompson, Grain growth in thin films. Annu. Rev. Mater. Sci. 20, 245–268 (1990). https://doi.org/10.1063/1.3058054

    Article  CAS  Google Scholar 

  64. M. Ohring, Materials Science of Thin Films (Elsevier, Amsterdam, 2001)

    Google Scholar 

  65. H. Okamoto, Al-Ni (Aluminum-Nickel). J. Phase Equilib. 14, 257 (1993)

    Article  Google Scholar 

  66. K.A. Gschneidner, F.W. Calderwood, The Al-Ce (Aluminum-Cerium) System Equilibrium Diagram, n.d.

  67. K. Maung, J.C. Earthman, F.A. Mohamed, Inverse Hall-Petch behavior in diamantane stabilized bulk nanocrystalline aluminum. Acta Mater. 60, 5850–5857 (2012). https://doi.org/10.1016/j.actamat.2012.07.026

    Article  CAS  Google Scholar 

  68. Y. Ito, K. Edalati, Z. Horita, High-pressure torsion of aluminum with ultrahigh purity (99.9999%) and occurrence of inverse Hall-Petch relationship. Mater. Sci. Eng. A 679, 428–434 (2017). https://doi.org/10.1016/j.msea.2016.10.066

    Article  CAS  Google Scholar 

  69. J. Schioøtz, K.W. Jacobsen, A maximum in the strength of nanocrystalline copper. Science 301, 1357–1359 (2003). https://doi.org/10.1126/SCIENCE.1086636

    Article  Google Scholar 

  70. L. Wang, J. Teng, P. Liu, A. Hirata, E. Ma, Z. Zhang, M. Chen, X. Han, Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum. Nat. Commun. (2014). https://doi.org/10.1038/ncomms5402

    Article  Google Scholar 

  71. Z. Shan, E.A. Stach, J.M.K. Wiezorek, J.A. Knapp, D.M. Follstaedt, S.X. Mao, Grain boundary-mediated plasticity in nanocrystalline nickel. Science 305, 654–657 (2004). https://doi.org/10.1126/science.1098741

    Article  CAS  Google Scholar 

  72. T.J. Rupert, J.R. Trelewicz, C.A. Schuh, Grain boundary relaxation strengthening of nanocrystalline Ni–W alloys. J. Mater. Res. 27, 1285–1294 (2012). https://doi.org/10.1557/jmr.2012.55

    Article  CAS  Google Scholar 

  73. J. Hu, Y.N. Shi, X. Sauvage, G. Sha, K. Lu, Grain boundary stability governs hardening and softening in extremely fine nanograined metals. Science 355, 1292–1296 (2017). https://doi.org/10.1126/science.aal5166

    Article  CAS  Google Scholar 

  74. O. Renk, V. Maier-Kiener, I. Issa, J.H. Li, D. Kiener, R. Pippan, Anneal hardening and elevated temperature strain rate sensitivity of nanostructured metals: Their relation to intergranular dislocation accommodation. Acta Mater. 165, 409–419 (2019). https://doi.org/10.1016/j.actamat.2018.12.002

    Article  CAS  Google Scholar 

  75. X. Huang, N. Hansen, N. Tsuji, Hardening by annealing and softening by deformation in nanostructured metals. Science 312, 249–251 (2006). https://doi.org/10.1126/science.1124268

    Article  CAS  Google Scholar 

  76. A. Hasnaoui, H. Van Swygenhoven, P.M. Derlet, On non-equilibrium grain boundaries and their effect on thermal and mechanical behaviour: A molecular dynamics computer simulation. Acta Mater. 50, 3927–3939 (2002). https://doi.org/10.1016/S1359-6454(02)00195-7

    Article  CAS  Google Scholar 

  77. N.Q. Vo, J. Schäfer, R.S. Averback, K. Albe, Y. Ashkenazy, P. Bellon, Reaching theoretical strengths in nanocrystalline Cu by grain boundary doping. Scr. Mater. 65, 660–663 (2011). https://doi.org/10.1016/J.SCRIPTAMAT.2011.06.048

    Article  CAS  Google Scholar 

  78. Q. Li, J. Wang, H. Wang, X. Zhang, Achieving strong and stable nanocrystalline Al alloys through compositional design. J. Mater. Res. 2021, 1–25 (2021). https://doi.org/10.1557/S43578-021-00363-7

    Article  Google Scholar 

  79. O. Renk, A. Hohenwarter, K. Eder, K.S. Kormout, J.M. Cairney, R. Pippan, Increasing the strength of nanocrystalline steels by annealing: Is segregation necessary? Scr. Mater. 95, 27–30 (2015). https://doi.org/10.1016/J.SCRIPTAMAT.2014.09.023

    Article  CAS  Google Scholar 

  80. A.E. Perrin, C.A. Schuh, Stabilized nanocrystalline alloys: The intersection of grain boundary segregation with processing science. Annu. Rev. Mater. Res. 51, 241–268 (2021). https://doi.org/10.1146/ANNUREV-MATSCI-080819-121823

    Article  CAS  Google Scholar 

  81. Y.H. Gao, L.F. Cao, J. Kuang, H. Song, G. Liu, J.Y. Zhang, J. Sun, Solute repositioning to tune the multiple microalloying effects in an Al–Cu alloy with minor Sc, Fe and Si addition. Mater. Sci. Eng.: A 803, 140509 (2021). https://doi.org/10.1016/j.msea.2020.140509

    Article  CAS  Google Scholar 

  82. D.W. Hoffman, Perspective on stresses in magnetron-sputtered thin films. J. Vac. Sci. Technol., A: Vac. Surf. Films 12, 953 (1998). https://doi.org/10.1116/1.579073

    Article  Google Scholar 

  83. I.G. Mcdonald, W.M. Moehlenkamp, D. Arola, J. Wang, Residual stresses in Cu/Ni multilayer thin films measured using the Sin2ψ method. Exp. Mech. 59, 111–120 (2019). https://doi.org/10.1007/s11340-018-00447-2

    Article  CAS  Google Scholar 

  84. S. Suresh, A.E. Giannakopoulos, A new method for estimating residual stresses by instrumented sharp indentation. Acta Mater. 46, 5755–5767 (1998). https://doi.org/10.1016/S1359-6454(98)00226-2

    Article  CAS  Google Scholar 

  85. T.Y. Tsui, W.C. Oliver, G.M. Pharr, Influences of stress on the measurement of mechanical properties using nanoindentation: Part I. Experimental studies in an aluminum alloy. J. Mater. Res. 11, 752–759 (1996). https://doi.org/10.1557/JMR.1996.0091

    Article  CAS  Google Scholar 

  86. A. Bolshakov, W.C. Oliver, G.M. Pharr, Influences of stress on the measurement of mechanical properties using nanoindentation: Part II. Finite element simulations. J. Mater. Res. 11, 760–768 (1996). https://doi.org/10.1557/JMR.1996.0092

    Article  CAS  Google Scholar 

  87. K. Hono, Y. Zhang, A.P. Tsai, A. Inoue, T. Sakurai, Solute partitioning in partially crystallized Al-Ni-Ce(-Cu) metallic glasses. Scr. Metall. Mater. 32, 191–196 (1995). https://doi.org/10.1016/S0956-716X(99)80035-1

    Article  CAS  Google Scholar 

  88. S. Ruan, C.A. Schuh, Electrodeposited Al–Mn alloys with microcrystalline, nanocrystalline, amorphous and nano-quasicrystalline structures. Acta Mater. 57, 3810–3822 (2009). https://doi.org/10.1016/J.ACTAMAT.2009.04.030

    Article  CAS  Google Scholar 

  89. N.A. Belov, E.S. Naumova, Prospects for designing structural cast eutectic alloys on Al-Ce-Ni system base. Metally (Moscow), pp. 146–152 (1996)

  90. H. Wang, Z. Li, Z. Chen, B. Yang, Thermodynamic optimization of the Ni-Al-Ce ternary system. J. Phase Equilib. Diffus. 37, 222–228 (2016). https://doi.org/10.1007/s11669-015-0447-6

    Article  CAS  Google Scholar 

  91. A. Hasnaoui, H. Van Swygenhoven, P.M. Derlet, Cooperative processes during plastic deformation in nanocrystalline fcc metals: A molecular dynamics simulation. Phys. Rev. B 66, 184112 (2002). https://doi.org/10.1103/PhysRevB.66.184112

    Article  CAS  Google Scholar 

  92. A. Khalajhedayati, T.J. Rupert, Emergence of localized plasticity and failure through shear banding during microcompression of a nanocrystalline alloy. Acta Mater. 65, 326–337 (2014). https://doi.org/10.1016/j.actamat.2013.10.074

    Article  CAS  Google Scholar 

  93. T. Brink, K. Albe, From metallic glasses to nanocrystals: Molecular dynamics simulations on the crossover from glass-like to grain-boundary-mediated deformation behaviour. Acta Mater. 156, 205–214 (2018). https://doi.org/10.1016/j.actamat.2018.06.036

    Article  CAS  Google Scholar 

  94. R.W. Cheary, A. Coelho, A fundamental parameters approach to X-ray line-profile fitting. J. Appl. Crystallogr. 25, 109–121 (1992). https://doi.org/10.1107/S0021889891010804

    Article  CAS  Google Scholar 

  95. A.L. Patterson, The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978 (1939). https://doi.org/10.1103/PhysRev.56.978

    Article  CAS  Google Scholar 

  96. C. Noyan, T.C. Huang, B.R. York, Residual stress/strain analysis in thin films by X-ray diffraction. Crit. Rev. Solid State Mater. Sci. 20, 125 (1995). https://doi.org/10.1080/10408439508243733

    Article  CAS  Google Scholar 

  97. T. Lei, J. Shin, D.S. Gianola, T.J. Rupert, Bulk nanocrystalline Al alloys with hierarchical reinforcement structures via grain boundary segregation and complexion formation. Acta Mater. 221, 117394 (2021). https://doi.org/10.1016/j.actamat.2021.117394

    Article  CAS  Google Scholar 

Download references

Funding

This material is based upon work supported by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) under the Advanced Manufacturing Office Award Number DE‐EE0009114. GHB acknowledges support from the National Science Foundation Graduate Research Fellowship under Grant No. 1650114. This work employed the MRL Shared Experimental Facilities at UC Santa Barbara, which are supported by the MRSEC Program of the NSF under Award No. DMR 1720256; a member of the NSF-funded Materials Research Facilities Network (www.mrfn.org).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel S. Gianola.

Ethics declarations

Conflict of interest

Not applicable.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, J., Wang, F., Balbus, G.H. et al. Optimizing thermal stability and mechanical behavior in segregation-engineered nanocrystalline Al–Ni–Ce alloys: A combinatorial study. Journal of Materials Research 37, 3083–3098 (2022). https://doi.org/10.1557/s43578-022-00715-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00715-x

Keywords

Navigation