Skip to main content
Log in

Synthesis and characterization of a novel CoCrFeMnNi high-entropy alloy-reinforced AA6082 composite

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The influence of CoCrFeMnNi high-entropy alloy (HEA) particle addition on the microstructure and mechanical properties of the \({\text{Al}}_{6082}\) the composite was examined. Mechanical alloying was used to develop the CoCrFeMnNi HEA, while stir-squeeze casting assisted with an ultrasonic transducer was used to process the \({\text{Al}}_{6082}\) alloy and \({\text{C}}_{{\mathrm{Al}}_{6082}+{\mathrm{HEA}}_{x\mathrm{wt\%}}}\) composites (where, x = 2, 4, 6, 8). The microstructural and morphological investigation was carried out using XRD, EDS, FESEM, and elemental mapping techniques. At the as-cast condition, the hardness, yield strength, and ultimate tensile strength of the \({\text{C}}_{{\text{Al}}_{6082}+{\text{HEA}}_{8{\text{wt}}\%}}\) composite were increased by 28.57%, 79.46%, and 87.931%, respectively, over monolithic alloy, which was associated with a consistent distribution of HEA particles. Furthermore, it possessed the best tensile strength, yield strength, and fracture strain when compared with \({\text{C}}_{{\text{Al}}_{6082}+{\text{HEA}}}\) composites, indicating a better interaction among HEA particles and Al matrix, and a high dislocation density in the Al matrix.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

The processed data will be made available on reasonable request as at this time is part of an ongoing study.

References

  1. T.W. Lu, W.P. Chen, P. Wang, M.D. Mao, Y.X. Liu, Z.Q. Fu, Enhanced mechanical properties and thermo-physical properties of 7075Al hybrid composites reinforced by the mixture of Cr particles and SiCp. J. Alloys Compd. 735, 1137–1144 (2018). https://doi.org/10.1016/j.jallcom.2017.11.227

    Article  CAS  Google Scholar 

  2. P. Xie et al., Highly efficient decomposition of ammonia using high-entropy alloy catalysts. Nat. Commun. 10(1), 1–12 (2019). https://doi.org/10.1038/s41467-019-11848-9

    Article  CAS  Google Scholar 

  3. A.S. Sharma, S. Yadav, K. Biswas, B. Basu, High-entropy alloys and metallic nanocomposites: processing challenges, microstructure development and property enhancement. Mater. Sci. Eng. R 131, 1–42 (2018). https://doi.org/10.1016/j.mser.2018.04.003

    Article  Google Scholar 

  4. G.M. Karthik, G.D.J. Ram, R.S. Kottada, Friction deposition of titanium particle reinforced aluminum matrix composites. Mater. Sci. Eng. A 653, 71–83 (2016). https://doi.org/10.1016/j.msea.2015.12.005

    Article  CAS  Google Scholar 

  5. S. Scudino, G. Liu, M. Sakaliyska, K.B. Surreddi, J. Eckert, Powder metallurgy of Al-based metal matrix composites reinforced with β-Al3Mg2 intermetallic particles: Analysis and modeling of mechanical properties. Acta Mater. 57(15), 4529–4538 (2009). https://doi.org/10.1016/j.actamat.2009.06.017

    Article  CAS  Google Scholar 

  6. S. Selvakumar, I. Dinaharan, R. Palanivel, B. Ganesh Babu, Characterization of molybdenum particles reinforced Al6082 aluminum matrix composites with improved ductility produced using friction stir processing. Mater. Charact. 125, 13–22 (2017). https://doi.org/10.1016/j.matchar.2017.01.016

    Article  CAS  Google Scholar 

  7. S. Kumar, V. Balasubramanian, Effect of reinforcement size and volume fraction on the abrasive wear behaviour of AA7075 Al/SiCp P/M composites-a statistical analysis. Tribol. Int. 43(1–2), 414–422 (2010). https://doi.org/10.1016/j.triboint.2009.07.003

    Article  CAS  Google Scholar 

  8. M. Acilar, F. Gul, Effect of the applied load, sliding distance and oxidation on the dry sliding wear behaviour of Al-10Si/SiCp composites produced by vacuum infiltration technique. Mater. Des. 25(3), 209–217 (2004). https://doi.org/10.1016/j.matdes.2003.09.015

    Article  CAS  Google Scholar 

  9. Y. Xie, X. Meng, R. Zang, Y. Chang, L. Wan, Y. Huang, Deformation-driven modification towards strength-ductility enhancement in Al–Li–Mg–Zn–Cu lightweight high-entropy alloys. Mater. Sci. Eng. A 830, 142332 (2022). https://doi.org/10.1016/j.msea.2021.142332

    Article  CAS  Google Scholar 

  10. J. Li, X. Meng, L. Wan, Y. Huang, Welding of high entropy alloys: progresses, challenges and perspectives. J. Manuf. Process. 68, 293–331 (2021). https://doi.org/10.1016/j.jmapro.2021.05.042

    Article  Google Scholar 

  11. J.W. Yeh et al., Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6(5), 299–303 (2004). https://doi.org/10.1002/adem.200300567

    Article  CAS  Google Scholar 

  12. B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375–377(1–2), 213–218 (2004). https://doi.org/10.1016/j.msea.2003.10.257

    Article  CAS  Google Scholar 

  13. E.J. Pickering, N.G. Jones, High-entropy alloys: a critical assessment of their founding principles and future prospects. Int. Mater. Rev. 61(3), 183–202 (2016). https://doi.org/10.1080/09506608.2016.1180020

    Article  CAS  Google Scholar 

  14. J.W. Yeh, Recent progress in high-entropy alloys. Ann. Chim. Sci. des Mater. 31(6), 633–648 (2006). https://doi.org/10.3166/acsm.31.633-648

    Article  CAS  Google Scholar 

  15. A. Arab, Y. Guo, Q. Zhou, P. Chen, Fabrication of nanocrystalline AlCoCrFeNi high entropy alloy through shock consolidation and mechanical alloying. Entropy 21(9), 880 (2019). https://doi.org/10.3390/e21090880

    Article  CAS  Google Scholar 

  16. Y. Wu, P.K. Liaw, Y. Zhang, Preparation of bulk tizrnbmov and nbtialtav high-entropy alloys by powder sintering. Metals (Basel) 11(11), 1–12 (2021). https://doi.org/10.3390/met11111748

    Article  CAS  Google Scholar 

  17. A. Parakh, M. Vaidya, N. Kumar, R. Chetty, B.S. Murty, Effect of crystal structure and grain size on corrosion properties of AlCoCrFeNi high entropy alloy. J. Alloys Compd. 863, 158056 (2021). https://doi.org/10.1016/j.jallcom.2020.158056

    Article  CAS  Google Scholar 

  18. W. Li, D. Xie, D. Li, Y. Zhang, Y. Gao, P.K. Liaw, Mechanical behavior of high-entropy alloys. Prog. Mater. Sci. 118, 100777 (2021). https://doi.org/10.1016/j.pmatsci.2021.100777

    Article  CAS  Google Scholar 

  19. E. Abbasi, K. Dehghani, Phase prediction and microstructure of centrifugally cast non-equiatomic Co-Cr-Fe-Mn-Ni(Nb, C) high entropy alloys. J. Alloys Compd. 783, 292–299 (2019). https://doi.org/10.1016/j.jallcom.2018.12.329

    Article  CAS  Google Scholar 

  20. B. Gwalani et al., Compositionally graded high entropy alloy with a strong front and ductile back. Mater. Today Commun. 20, 100602 (2019). https://doi.org/10.1016/j.mtcomm.2019.100602

    Article  CAS  Google Scholar 

  21. L. Tian, M. Fu, W. Xiong, Microstructural evolution of AlCoCrFeNiSi high-entropy alloy powder during mechanical alloying and its coating performance. Materials (2018). https://doi.org/10.3390/ma11020320

    Article  Google Scholar 

  22. A. Kumar, A. Singh, A. Suhane, Mechanically alloyed high entropy alloys: existing challenges and opportunities. J. Mater. Res. Technol. 17, 2431–2456 (2022). https://doi.org/10.1016/j.jmrt.2022.01.141

    Article  CAS  Google Scholar 

  23. K. Praveen Kumar, M. Gopi Krishna, J. Babu Rao, N.R.M.R. Bhargava, Fabrication and characterization of 2024 aluminium—high entropy alloy composites. J. Alloys Compd. 640, 421–427 (2015). https://doi.org/10.1016/j.jallcom.2015.03.093

    Article  CAS  Google Scholar 

  24. Z.W. Wang, Y.B. Yuan, R.X. Zheng, K. Ameyama, C.L. Ma, Microstructures and mechanical properties of extruded 2024 aluminum alloy reinforced by FeNiCrCoAl3 particles. Trans. Nonferrous Met. Soc. China 24(7), 2366–2373 (2014). https://doi.org/10.1016/S1003-6326(14)63358-6

    Article  CAS  Google Scholar 

  25. R.K. Prabakaran, A.N. Sait, V. Senthilkumar, Synthesis and characteristization of high entropy alloy (crmnfenicu) reinforced AA6061 aluminium matrix composite. Mech. Mech. Eng. 21(2), 415–424 (2017)

    Google Scholar 

  26. J. Li et al., Friction stir processing of high-entropy alloy reinforced aluminum matrix composites for mechanical properties enhancement. Mater. Sci. Eng. A 792, 139755 (2020). https://doi.org/10.1016/j.msea.2020.139755

    Article  CAS  Google Scholar 

  27. E. Ananiadis, K.T. Argyris, T.E. Matikas, A.K. Sfikas, A.E. Karantzalis, Microstructure and corrosion performance of aluminium matrix composites reinforced with refractory high-entropy alloy particulates. Appl. Sci. 11(3), 1–12 (2021). https://doi.org/10.3390/app11031300

    Article  CAS  Google Scholar 

  28. Y. Liu, J. Chen, X. Wang, T. Guo, J. Liu, Significantly improving strength and plasticity of Al-based composites by in-situ formed AlCoCrFeNi core–shell structure. J. Mater. Res. Technol. 15, 4117–4129 (2021). https://doi.org/10.1016/j.jmrt.2021.10.016

    Article  CAS  Google Scholar 

  29. Y.L. Chen, Y.H. Hu, C.A. Hsieh, J.W. Yeh, S.K. Chen, Competition between elements during mechanical alloying in an octonary multi-principal-element alloy system. J. Alloys Compd. 481(1–2), 768–775 (2009). https://doi.org/10.1016/j.jallcom.2009.03.087

    Article  CAS  Google Scholar 

  30. T. Lu et al., The influence of nanocrystalline CoNiFeAl0.4Ti0.6Cr0.5 high-entropy alloy particles addition on microstructure and mechanical properties of SiCp/7075Al composites. Mater. Sci. Eng. A 726, 126–136 (2018). https://doi.org/10.1016/j.msea.2018.04.080

    Article  CAS  Google Scholar 

  31. X. Jiang, M. Galano, F. Audebert, Extrusion textures in Al, 6061 alloy and 6061/SiCp nanocomposites. Mater. Charact. 88, 111–118 (2014). https://doi.org/10.1016/j.matchar.2013.11.009

    Article  CAS  Google Scholar 

  32. K. Huang, K. Marthinsen, Q. Zhao, R.E. Logé, The double-edge effect of second-phase particles on the recrystallization behaviour and associated mechanical properties of metallic materials. Prog. Mater. Sci. 92, 284–359 (2018). https://doi.org/10.1016/j.pmatsci.2017.10.004

    Article  CAS  Google Scholar 

  33. J. Liu et al., Improved structural homogeneity and mechanical properties of nanoparticles reinforced Al composites after orthogonal thermomechanical processes. J. Alloys Compd. 767, 293–301 (2018). https://doi.org/10.1016/j.jallcom.2018.07.083

    Article  CAS  Google Scholar 

  34. J. Liu et al., Simultaneously increasing strength and ductility of nanoparticles reinforced Al composites via accumulative orthogonal extrusion process. Mater. Res. Lett. (2018). https://doi.org/10.1080/21663831.2018.1471421

    Article  Google Scholar 

  35. Y. Sun, L. Fu, Z. Fu, A. Shan, E.J. Lavernia, Enhanced thermal stability and ductility in a nanostructured Ni-based alloy. Scr. Mater. 141, 1–5 (2017). https://doi.org/10.1016/j.scriptamat.2017.07.013

    Article  CAS  Google Scholar 

  36. X. Wu et al., Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proc. Natl. Acad. Sci. (2015). https://doi.org/10.1073/pnas.1517193112

    Article  Google Scholar 

  37. Z. Wang et al., Tensile properties of Al–12Si matrix composites reinforced with Ti–Al-based particles. J. Alloys Compd. 630, 256–259 (2015). https://doi.org/10.1016/j.jallcom.2014.12.254

    Article  CAS  Google Scholar 

  38. Y. Zhao, X. Ma, H. Chen, X. Zhao, X. Liu, Preferred orientation and interfacial structure in extruded nano-Al 3 BC/6061 Al. Mater. Des. 131, 23–31 (2017). https://doi.org/10.1016/j.matdes.2017.05.088

    Article  CAS  Google Scholar 

  39. A.R. Miedema, On the heat of formation of solid alloys. II. J. Less-Common Met. 46(1), 67–83 (1976). https://doi.org/10.1016/0022-5088(76)90180-6

    Article  CAS  Google Scholar 

  40. X. Yang, Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 132(2–3), 233–238 (2012). https://doi.org/10.1016/j.matchemphys.2011.11.021

    Article  CAS  Google Scholar 

  41. Y. Song, D. Kim, S. Nam, K.A. Lee, H. Choi, Effect of milling duration on oxide-formation behavior of oxide-dispersion-strengthened high-entropy alloys. Arch. Metall. Mater. 66(3), 735–740 (2021). https://doi.org/10.24425/amm.2021.136371

    Article  CAS  Google Scholar 

  42. A. Fourmont, S. Le Gallet, O. Politano, C. Desgranges, F. Baras, Effects of planetary ball milling on AlCoCrFeNi high entropy alloys prepared by Spark Plasma Sintering: experiments and molecular dynamics study. J. Alloys Compd. 820, 153448 (2020). https://doi.org/10.1016/j.jallcom.2019.153448

    Article  CAS  Google Scholar 

  43. W.W. Zhang et al., A novel high-strength Al-based nanocomposite reinforced with Ti-based metallic glass nanoparticles produced by powder metallurgy. Mater. Sci. Eng. A 734, 34–41 (2018). https://doi.org/10.1016/j.msea.2018.07.082

    Article  CAS  Google Scholar 

  44. R.N. Shahid, S. Scudino, Strengthening of Al-Fe3Al composites by the generation of harmonic structures. Sci. Rep. 8(1), 1–12 (2018). https://doi.org/10.1038/s41598-018-24824-y

    Article  CAS  Google Scholar 

  45. H. Yang, T.D. Topping, K. Wehage, L. Jiang, E.J. Lavernia, J.M. Schoenung, Tensile behavior and strengthening mechanisms in a submicron B4C-reinforced Al trimodal composite. Mater. Sci. Eng. A 616, 35–43 (2014). https://doi.org/10.1016/j.msea.2014.07.079

    Article  CAS  Google Scholar 

  46. M. Yang, D. Yan, F. Yuan, P. Jiang, E. Ma, X. Wu, Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength. Proc. Natl. Acad. Sci. USA 115(28), 7224–7229 (2018). https://doi.org/10.1073/pnas.1807817115

    Article  CAS  Google Scholar 

  47. N. Chawla, J.J. Williams, R. Saha, Mechanical behavior and microstructure characterization of sinter-forged SiC particle reinforced aluminum matrix composites. J. Light Met. 2(4), 215–227 (2002). https://doi.org/10.1016/S1471-5317(03)00005-1

    Article  Google Scholar 

  48. G.E. Dieter, Mechanical metallurgy. Mech. Metall. (2011). https://doi.org/10.5962/bhl.title.35895

    Article  Google Scholar 

  49. K.B. Nie, X.J. Wang, K. Wu, X.S. Hu, M.Y. Zheng, Development of SiCp/AZ91 magnesium matrix nanocomposites using ultrasonic vibration. Mater. Sci. Eng. A 540, 123–129 (2012). https://doi.org/10.1016/j.msea.2012.01.112

    Article  CAS  Google Scholar 

  50. H. Yang, L. Jiang, M. Balog, P. Krizik, J.M. Schoenung, Reinforcement size dependence of load bearing capacity in ultrafine-grained metal matrix composites. Metall. Mater. Trans. A 48(9), 4385–4392 (2017). https://doi.org/10.1007/s11661-017-4186-7

    Article  CAS  Google Scholar 

  51. L. Zhao, H. Lu, Z. Gao, Microstructure and mechanical properties of Al/graphene composite produced by high-pressure torsion. Adv. Eng. Mater. 17(7), 976–981 (2015). https://doi.org/10.1002/adem.201400375

    Article  CAS  Google Scholar 

  52. S.F. Hassan, M. Gupta, Effect of particulate size of Al2O3 reinforcement on microstructure and mechanical behavior of solidification processed elemental Mg. J. Alloys Compd. 419(1–2), 84–90 (2006). https://doi.org/10.1016/j.jallcom.2005.10.005

    Article  CAS  Google Scholar 

  53. L. Jiang et al., Toughening of aluminum matrix nanocomposites via spatial arrays of boron carbide spherical nanoparticles. Acta Mater. 103, 128–140 (2016). https://doi.org/10.1016/j.actamat.2015.09.057

    Article  CAS  Google Scholar 

  54. Z. Zhang et al., Mechanical behavior of ultrafine-grained Al composites reinforced with B4C nanoparticles. Scr. Mater. 65(8), 652–655 (2011). https://doi.org/10.1016/j.scriptamat.2011.06.037

    Article  CAS  Google Scholar 

  55. X. Du, T. Gao, Z. Qian, Y. Wu, X. Liu, The in-situ synthesis and strengthening mechanism of the multi-scale SiC particles in Al-Si-C alloys. J. Alloys Compd. 750, 935–944 (2018). https://doi.org/10.1016/j.jallcom.2018.04.006

    Article  CAS  Google Scholar 

  56. W. Jiang, J. Zhu, G. Li, F. Guan, Y. Yu, Z. Fan, Enhanced mechanical properties of 6082 aluminum alloy via SiC addition combined with squeeze casting. J. Mater. Sci. Technol. 88, 119–131 (2021). https://doi.org/10.1016/j.jmst.2021.01.077

    Article  CAS  Google Scholar 

  57. K. Ravi Kumar, T. Pridhar, V.S. Sree Balaji, Mechanical properties and characterization of zirconium oxide (ZrO2) and coconut shell ash(CSA) reinforced aluminium (Al 6082) matrix hybrid composite. J. Alloys Compd. 765, 171–179 (2018). https://doi.org/10.1016/j.jallcom.2018.06.177

    Article  CAS  Google Scholar 

  58. J. Zhu, W. Jiang, G. Li, F. Guan, Y. Yu, Z. Fan, Microstructure and mechanical properties of SiCnp/Al6082 aluminum matrix composites prepared by squeeze casting combined with stir casting. J. Mater. Process. Technol. 283, 116699 (2020). https://doi.org/10.1016/j.jmatprotec.2020.116699

    Article  CAS  Google Scholar 

  59. K. Ravikumar, K. Kiran, V.S. Sreebalaji, Characterization of mechanical properties of aluminium/tungsten carbide composites. Meas. J. Int. Meas. Confed. 102, 142–149 (2017). https://doi.org/10.1016/j.measurement.2017.01.045

    Article  Google Scholar 

  60. P. Roy, S. Singh, K. Pal, Enhancement of mechanical and tribological properties of SiC- and CB-reinforced aluminium 7075 hybrid composites through friction stir processing. Adv. Compos. Mater. 28(sup1), 1–18 (2019). https://doi.org/10.1080/09243046.2017.1405596

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We author sincerely acknowledge the support provided by the Maulana Azad National Institute of Technology, Bhopal, and extend their gratitude to the Materials Research center, Malaviya National Institute of Technology Jaipur for their Key support.

Funding

No Funding is available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akshay Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15131 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Singh, A. & Suhane, A. Synthesis and characterization of a novel CoCrFeMnNi high-entropy alloy-reinforced AA6082 composite. Journal of Materials Research 37, 2961–2978 (2022). https://doi.org/10.1557/s43578-022-00701-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00701-3

Keywords

Navigation