Skip to main content

Advertisement

Log in

Synthesis and evaluation of a new gel polymer electrolyte for high-performance Li-ion batteries from electrospun nanocomposite of PVDF/Ca–Al-layered double hydroxide

  • Article
  • FOCUS ISSUE: Two-dimensional Materials for Future Generation Energy Storage Applications
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Poly(vinylidene fluoride) (PVDF)/Ca–Al-layered double hydroxide(CAL) (PCL) nanocomposite-based nanofabrics were electrospun for application in lithium-ion batteries as gel polymer electrolyte (GPE). The nanofabric exhibited a high β-phase content of 82.79% after the addition of CAL that was synthesized by co-precipitation method. The PCL-based GPE exhibited enhanced electrochemical properties, such as high ionic conductivity, optimal Li-ion transference number, and improved electrolyte uptake due to the presence of a highly interconnected porous structure. The PCL GPE exhibited an ionic conductivity of 3.54 × 10–3 S cm−1 at ambient temperature, which is much higher than that of pristine PVDF and commercial Celgard® 2400 separators. Moreover, Li/PCL/LiCoO2 cell showed an initial discharge capacity of 140.31 mAh g−1, which is superior to that of PVDF and Celgard® 2400 separators. It also exhibited high coulombic efficiency retention of 99% after 30 cycles of charging. PCL-based GPE showed superior mechanical and low thermal shrinkage properties, indicating its suitability in battery separator application.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. M. Armand, J.-M. Tarascon, Building better batteries. Nature 451(7179), 652 (2008)

    CAS  Google Scholar 

  2. J.-M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414(6861), 359 (2001)

    CAS  Google Scholar 

  3. R.A. Marsh, S. Vukson, S. Surampudi, B.V. Ratnakumar, M.C. Smart, M. Manzo, P.J. Dalton, Li ion batteries for aerospace applications. J. Power Sources 97–98, 25 (2001)

    Google Scholar 

  4. K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough: LixCoO2. Solid State Ionics 34(c), 171 (1981)

  5. J.W. Choi, D. Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1(4), 16013 (2016)

    CAS  Google Scholar 

  6. M.S. Whittingham, Y.S. Meng, J. Bréger, C.P. Grey, G. Ceder, Lithium Batteries and Cathode Materials. Science 104(4244), 1126 (2004)

    Google Scholar 

  7. C.R. Jarvis, M.J. Lain, M.V. Yakovleva, Y. Gao, A prelithiated carbon anode for lithium-ion battery applications. J. Power Sources 162(2), 800 (2006)

    CAS  Google Scholar 

  8. J.Y. Kim, Y. Lee, D.Y. Lim, Plasma-modified polyethylene membrane as a separator for lithium-ion polymer battery. Electrochim. Acta 54(14), 3714 (2009)

    CAS  Google Scholar 

  9. H. Jeon, D. Yeon, T. Lee, J. Park, M.-H. Ryou, Y.M. Lee, A water-based Al2O3 ceramic coating for polyethylene-based microporous separators for lithium-ion batteries. J. Power Sources 315, 161 (2016)

    CAS  Google Scholar 

  10. H. Wang, J. Wu, C. Cai, J. Guo, H. Fan, C. Zhu, H. Dong, N. Zhao, J. Xu, Mussel inspired modification of polypropylene separators by catechol/polyamine for Li-Ion batteries. ACS Appl. Mater. Interfaces 6(8), 5602 (2014)

    CAS  Google Scholar 

  11. L. Ye, Z. Feng, Polymer electrolytes as solid solvents and their applications, in Polymer Electrolytes (Beijing Institute of Technology, Beijing, 2010), p. 550

  12. A.K. Solarajan, V. Murugadoss, S. Angaiah, High performance electrospun PVdF-HFP/SiO 2 nanocomposite membrane electrolyte for Li-ion capacitors. J. Appl. Polym. Sci. 134(32), 45177 (2017)

    Google Scholar 

  13. B. Huang, Z. Wang, G. Li, H. Huang, R. Xue, L. Chen, F. Wang, Lithium ion conduction in polymer electrolytes based on PAN. Solid State Ionics 85(1–4), 79 (1996)

    CAS  Google Scholar 

  14. Y. Kang, H.J. Kim, E. Kim, B. Oh, J.H. Cho, Photocured PEO-based solid polymer electrolyte and its application to lithium-polymer batteries. J. Power Sources 92(1–2), 255 (2001)

    CAS  Google Scholar 

  15. Y.H. Liao, M.M. Rao, W.S. Li, L.T. Yang, B.K. Zhu, R. Xu, C.H. Fu, Fumed silica-doped poly(butyl methacrylate-styrene)-based gel polymer electrolyte for lithium ion battery. J. Membr. Sci. 352(1–2), 95 (2010)

    CAS  Google Scholar 

  16. S. Janakiraman, O. Padmaraj, S. Ghosh, A. Venimadhav, A porous poly (vinylidene fluoride-co-hexafluoropropylene) based separator-cum-gel polymer electrolyte for sodium-ion battery. J. Electroanal. Chem. 826(August), 142 (2018)

    CAS  Google Scholar 

  17. S. Janakiraman, A. Surendran, R. Biswal, S. Ghosh, S. Anandhan, A. Venimadhav, Electrochemical characterization of a polar β-phase poly (vinylidene fluoride) gel electrolyte in sodium ion cell. J. Electroanal. Chem. 833, 411 (2019)

    CAS  Google Scholar 

  18. K. Bicy, S. Suriyakumar, P.A. Paul, A.S. Anu, N. Kalarikkal, A.M. Stephen, V.G. Geethamma, D. Rouxel, S. Thomas, Highly lithium ion conductive, Al2O3 decorated electrospun P(VDF-TrFE) membranes for lithium ion battery separators. New J. Chem. 42(24), 19505 (2018)

    Google Scholar 

  19. Y. Zhu, S. Xiao, Y. Shi, Y. Yang, Y. Wu, A trilayer poly(vinylidene fluoride)/polyborate/poly(vinylidene fluoride) gel polymer electrolyte with good performance for lithium ion batteries. J. Mater. Chem. A 1(26), 7790 (2013)

    CAS  Google Scholar 

  20. Y. Zhu, S. Xiao, Y. Shi, Y. Yang, Y. Hou, Y. Wu, A composite gel polymer electrolyte with high performance based on poly(vinylidene fluoride) and polyborate for lithium ion batteries. Adv. Energy Mater. 4(1), 1 (2014)

    Google Scholar 

  21. S. Gao, K. Wang, R. Wang, M. Jiang, J. Han, T. Gu, S. Cheng, K. Jiang, Poly(vinylidene fluoride)-based hybrid gel polymer electrolytes for additive-free lithium sulfur batteries. J. Mater. Chem. A 5(34), 17889 (2017)

    CAS  Google Scholar 

  22. C.L. Cheng, C.C. Wan, Y.Y. Wang, Preparation of porous, chemically cross-linked, PVdF-based gel polymer electrolytes for rechargeable lithium batteries. J. Power Sources 134(2), 202 (2004)

    CAS  Google Scholar 

  23. H. Kataoka, Y. Saito, T. Sakai, E. Quartarone, P. Mustarelli, Conduction mechanisms of PVDF-type gel polymer electrolytes of lithium prepared by a phase inversion process. J. Phys. Chem. B 104(48), 11460 (2000)

    CAS  Google Scholar 

  24. H. Huang, S.L. Wunder, Preparation of microporous PVDF based polymer electrolytes. J. Power Sources 97–98, 649 (2001)

    Google Scholar 

  25. J.R. Kim, S.W. Choi, S.M. Jo, W.S. Lee, B.C. Kim, Electrospun PVdF-based fibrous polymer electrolytes for lithium ion polymer batteries. Electrochim. Acta 50(1), 69 (2004)

    CAS  Google Scholar 

  26. S.-S. Choi, Y.S. Lee, C.W. Joo, S.G. Lee, J.K. Park, K.-S. Han, Electrospun PVDF nanofiber web as polymer electrolyte or separator. Electrochim. Acta 50(2–3), 339 (2004)

    CAS  Google Scholar 

  27. R.-S. Juang, C.-T. Hsieh, P.-A. Chen, Y.-F. Chen, Microwave-assisted synthesis of titania coating onto polymeric separators for improved lithium-ion battery performance. J. Power Sources 286, 526 (2015)

    CAS  Google Scholar 

  28. Y.-C. Nho, J.-Y. Sohn, J. Shin, J.-S. Park, Y.-M. Lim, P.-H. Kang, Preparation of nanocomposite γ-Al2O3/polyethylene separator crosslinked by electron beam irradiation for lithium secondary battery. Radiat. Phys. Chem. 132, 65 (2017)

    CAS  Google Scholar 

  29. C.M. Costa, M. Kundu, V.F. Cardoso, A.V. Machado, M.M. Silva, S. Lanceros-Méndez, Silica/poly(vinylidene fluoride) porous composite membranes for lithium-ion battery separators. J. Membr. Sci. 564, 842 (2018)

    CAS  Google Scholar 

  30. D. Wu, L. Deng, Y. Sun, K.S. Teh, C. Shi, Q. Tan, J. Zhao, D. Sun, L. Lin, A high-safety PVDF/Al2O3 composite separator for Li-ion batteries via tip-induced electrospinning and dip-coating. RSC Adv. 7(39), 24410 (2017)

    Google Scholar 

  31. P.P. Prosini, P. Villano, M. Carewska, A novel intrinsically porous separator for self-standing lithium-ion batteries. Electrochim. Acta 48(3), 227 (2002)

    CAS  Google Scholar 

  32. S. Rajendran, O. Mahendran, R. Kannan, Ionic conductivity studies in composite solid polymer electrolytes based on methylmethacrylate. J. Phys. Chem. Solids 63(2), 303 (2002)

    CAS  Google Scholar 

  33. F. Millange, R.I. Walton, L. Lei, D. O’Hare: Efficient separation of terephthalate and phthalate anions by selective ion-exchange intercalation in the layered double hydroxide Ca2Al(OH)6 ·NO3 ·2H2O. Chem. Mater. 12(7), 1990 (2000)

  34. Y. Gao, J. Wu, Q. Wang, C.A. Wilkie, D. O’Hare, Flame retardant polymer/layered double hydroxide nanocomposites. J. Mater. Chem. A 2(29), 10996 (2014)

    CAS  Google Scholar 

  35. B.M. Choudary, S. Madhi, N.S. Chowdari, M.L. Kantam, B. Sreedhar, B.M. Choudary, S. Madhi, N.S. Chowdari, M.L. Kantam, B. Sreedhar: Layered double hydroxide supported nanopalladium catalyst for Heck-, Suzuki-, Sonogashira-, and Stille-type coupling reactions of chloroarenes. J. Am. Chem. Soc. 124(47), 14127 (2002)

  36. H. Tagaya, S. Ogata, S. Nakano, J.-I. Kadokawa, M. Karasu, K. Chiba, Intercalation of azo compounds into layered aluminium dihydrogentriphosphate and a layered double hydroxide. J. Incl. Phenom. Mol. Recognit. Chem. 31(3), 231 (1998)

    CAS  Google Scholar 

  37. K. Ladewig, Z.P. Xu, G.Q. Lu, Layered double hydroxide nanoparticles in gene and drug delivery. Expert Opin. Drug Deliv. 6(9), 907 (2009)

    CAS  Google Scholar 

  38. F.P. De Sá, B.N. Cunha, L.M. Nunes, Effect of pH on the adsorption of Sunset Yellow FCF food dye into a layered double hydroxide (CaAl-LDH-NO3). Chem. Eng. J. 215–216, 122 (2013)

    Google Scholar 

  39. R. Gregorio, M. Cestari, Effect of crystallization temperature on the crystalline phase content and morphology of poly(vinylidene fluoride). J. Polym. Sci. Part B Polym. Phys. 32(5), 859 (1994)

    CAS  Google Scholar 

  40. W.-J. Song, S.H. Joo, D.H. Kim, C. Hwang, G.Y. Jung, S. Bae, Y. Son, J. Cho, H.-K. Song, S.K. Kwak, S. Park, S.J. Kang, Significance of ferroelectric polarization in poly (vinylidene difluoride) binder for high-rate Li-ion diffusion. Nano Energy 32, 255 (2017)

    CAS  Google Scholar 

  41. M. Kundu, C.M. Costa, J. Dias, A. Maceiras, J.L. Vilas, S. Lanceros-Méndez, On the relevance of the polar β-phase of poly(vinylidene fluoride) for high performance lithium-ion battery separators. J. Phys. Chem. C 121(47), 26216 (2017)

    Google Scholar 

  42. K. Jeddi, Y. Zhao, Y. Zhang, A. Konarov, P. Chen, Fabrication and characterization of an effective polymer nanocomposite electrolyte membrane for high performance lithium/sulfur batteries. J. Electrochem. Soc. 160(8), A1052 (2013)

    CAS  Google Scholar 

  43. L.-F.F. Fang, J.-L.L. Shi, H. Li, B.-K.K. Zhu, L.-P.P. Zhu, Construction of porous PVDF coating layer and electrochemical performances of the corresponding modified polyethylene separators for lithium ion batteries. J. Appl. Polym. Sci. 131(21), 1 (2014)

    Google Scholar 

  44. M. Raja, A.M. Stephan, Natural, biodegradable and flexible egg shell membranes as separators for lithium-ion batteries. RSC Adv. 4(102), 58546 (2014)

    CAS  Google Scholar 

  45. C. Man, P. Jiang, K. Wong, Y. Zhao, C. Tang, M. Fan, W. Lau, J. Mei, S. Li, H. Liu, D. Hui, Enhanced wetting properties of a polypropylene separator for a lithium-ion battery by hyperthermal hydrogen induced cross-linking of poly(ethylene oxide). J. Mater. Chem. A 2(30), 11980 (2014)

    CAS  Google Scholar 

  46. J. Chen, S. Wang, L. Ding, Y. Jiang, H. Wang, Performance of through-hole anodic aluminum oxide membrane as a separator for lithium-ion battery. J. Membr. Sci. 461, 22 (2014)

    CAS  Google Scholar 

  47. Y. Zhu, F. Wang, L. Liu, S. Xiao, Y. Yang, Y. Wu, Cheap glass fiber mats as a matrix of gel polymer electrolytes for lithium ion batteries. Sci. Rep. 3(1), 3187 (2013)

    Google Scholar 

  48. M. Zhu, J. Lan, C. Tan, G. Sui, X. Yang, Degradable cellulose acetate/poly-l-lactic acid/halloysite nanotube composite nanofiber membranes with outstanding performance for gel polymer electrolytes. J. Mater. Chem. A 4(31), 12136 (2016)

    CAS  Google Scholar 

  49. M.Z. Kufian, S.R. Majid, Performance of lithium-ion cells using 1 M LiPF6 in EC/DEC (v/v = 1/2) electrolyte with ethyl propionate additive. Ionics (Kiel). 16(5), 409 (2010)

    CAS  Google Scholar 

  50. K.K. Patel, J.M. Paulsen, J. Desilvestro, Numerical simulation of porous networks in relation to battery electrodes and separators. J. Power Sources 122(2), 144 (2003)

    CAS  Google Scholar 

  51. H.F. Xiang, Q.Y. Jin, C.H. Chen, X.W. Ge, S. Guo, J.H. Sun, Dimethyl methylphosphonate-based nonflammable electrolyte and high safety lithium-ion batteries. J. Power Sources 174(1), 335 (2007)

    CAS  Google Scholar 

  52. K. Perera, K. Vidanapathirana, Impedance spectroscopy, DC polarization, XRD and SEM studies on an ionic liquid based gel polymer electrolyte to be used for dye sensitized solar cells. Mater. Discov. 7, 30 (2017)

    Google Scholar 

  53. Y. Zhu, S. Xiao, Y. Shi, Y. Yang, Y. Hou, Y. Wu, A Composite gel polymer electrolyte with high performance based on poly(vinylidene fluoride) and polyborate for lithium ion batteries. Adv. Energy Mater. 4(1), 1300647 (2014)

    Google Scholar 

  54. B. Writer, Lithium-Ion Batteries: A Machine-Generated Summary of Current Research (Springer, Cham, 2019)

    Google Scholar 

  55. H.S. Jeong, S.C. Hong, S.Y. Lee, Effect of microporous structure on thermal shrinkage and electrochemical performance of Al2O3/poly(vinylidene fluoride-hexafluoropropylene) composite separators for lithium-ion batteries. J. Membr. Sci. 364(1–2), 177 (2010)

    CAS  Google Scholar 

  56. C. Shamitha, A. Mahendran, S. Anandhan, Effect of polarization switching on piezoelectric and dielectric performance of electrospun nanofabrics of poly(vinylidene fluoride)/Ca–Al LDH nanocomposite. J. Appl. Polym. Sci. 48697, 1 (2019)

    Google Scholar 

Download references

Acknowledgments

Shamitha C would like to thank National Institute of Technology of Karnataka (NITK), India for a research fellowship. The authors thank Prof. Udaya Bhat. K and Dr. Ravishankar. K. S for providing the TEM and UTM facility. The authors are obliged to Ms. U. Rashmi and Mr. Prajwal for their valuable assistance in SEM and TEM. AV is grateful to the Ministry of Human Resource Development’s (MHRD), IMPRINT project grant number 7911 and Ministry of Road and Transport, India for financial support. The authors dedicate this paper to the memory of late Professor Sudipto Ghosh, Metallurgical & Materials Engineering, I.I.T Kharagpur, West Bengal, India.

Funding

This research received no specific funding from any source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Anandhan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest for this work.

Consent for publication

All the authors have expressed their consent for the publication of this article.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3386 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamitha, C., Janakiraman, S., Ghosh, S. et al. Synthesis and evaluation of a new gel polymer electrolyte for high-performance Li-ion batteries from electrospun nanocomposite of PVDF/Ca–Al-layered double hydroxide. Journal of Materials Research 37, 3942–3954 (2022). https://doi.org/10.1557/s43578-022-00700-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00700-4

Keywords

Navigation