Skip to main content
Log in

Layered double hydroxide/hydroxyapatite-ciprofloxacin composite coating on AZ31 magnesium alloy: Corrosion resistance, antibacterial, osteogenesis

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

A Correction to this article was published on 21 July 2022

This article has been updated

Abstract

Magnesium alloys have received more attention as orthopedic repair materials, while their rapid degradation and susceptibility to bacterial infections limit their clinical medical applications. In this study, the layered double hydroxide/hydroxyapatite (LDH/HAp) composite coating was first prepared by hydrothermal method, and then ciprofloxacin (CIP) was loaded on LDH/HAp by the traditional immersion method. Composite coatings were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM) techniques. The LDH/HAp-CIP coating has a more excellent inhibitory effect on the activity of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). At the same time, composite coatings showed higher cell compatibility to MC3T3-E1 cells. Composite coatings promoted the expression of alkaline phosphatase (ALP) and upregulated the expression level of related osteogenic genes. Overall, these results are conducive to the advancement of the clinical application of magnesium alloys as orthopedic restorative materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Change history

References

  1. Y.F. Zheng, X.N. Gu, F. Witte, Biodegradable metals. Mater. Sci. Eng. R 77, 1–34 (2014). https://doi.org/10.1016/j.mser.2014.01.001

    Article  Google Scholar 

  2. J.L. Wang, J.K. Xu, C. Hopkins et al., Biodegradable magnesium-based implants in orthopedics-a general review and perspectives. Adv. Sci. 7(8), 1902443 (2020). https://doi.org/10.1002/advs.201902443

    Article  CAS  Google Scholar 

  3. S. Dutta, S. Gupta, M. Roy, Recent developments in magnesium metal-matrix composites for biomedical applications: a review. ACS Biomater. Sci. Eng. 6(9), 4748–4773 (2020). https://doi.org/10.1021/acsbiomaterials.0c00678

    Article  CAS  Google Scholar 

  4. L.J. He, Y. Shao, S.Q. Li et al., Advances in layer-by-layer self-assembled coatings upon biodegradable magnesium alloys. Sci. China Mater. 64(9), 2093–2106 (2021). https://doi.org/10.1007/s40843-020-1661-1

    Article  CAS  Google Scholar 

  5. S. Hiromoto, E. Nozoe, K. Hanada et al., In vivo degradation and bone formation behaviors of hydroxyapatite-coated Mg alloys in rat femur. Mater Sci Eng C 122, 111942 (2021). https://doi.org/10.1016/j.msec.2021.111942

    Article  CAS  Google Scholar 

  6. S. Cheng, D. Zhang, M. Li et al., Osteogenesis, angiogenesis and immune response of Mg-Al layered double hydroxide coating on pure Mg. Bioact. Mater. 6(1), 91–105 (2021). https://doi.org/10.1016/j.bioactmat.2020.07.014

    Article  CAS  Google Scholar 

  7. X.J. Li, H. Shi, Y. Cui et al., Dextran-caffeic acid/tetraaniline composite coatings for simultaneous improvement of cytocompatibility and corrosion resistance of magnesium alloy. Progr. Organ. Coat. (2020). https://doi.org/10.1016/j.porgcoat.2020.105928

    Article  Google Scholar 

  8. Y. Lin, Y. Yang, Y. Zhao et al., Incorporation of heparin/BMP2 complex on GOCS-modified magnesium alloy to synergistically improve corrosion resistance, anticoagulation, and osteogenesis. J. Mater. Sci. 32(3), 24 (2021). https://doi.org/10.1007/s10856-021-06497-8

    Article  CAS  Google Scholar 

  9. W. Wu, X. Sun, C.-L. Zhu et al., Biocorrosion resistance and biocompatibility of Mg–Al layered double hydroxide/poly-L-glutamic acid hybrid coating on magnesium alloy AZ31. Prog. Org. Coat. 147, 105746 (2020). https://doi.org/10.1016/j.porgcoat.2020.105746

    Article  CAS  Google Scholar 

  10. H.L. Zhou, J.Y. Li, J. Li et al., A composite coating with physical interlocking and chemical bonding on WE43 magnesium alloy for corrosion protection and cytocompatibility enhancement. Surf. Coat. Technol. 412, 127078 (2021)

    Article  CAS  Google Scholar 

  11. T.T. Li, L. Ling, M.C. Lin et al., Recent advances in multifunctional hydroxyapatite coating by electrochemical deposition. J. Mater. Sci. 55(15), 6352–6374 (2020). https://doi.org/10.1007/s10853-020-04467-z

    Article  CAS  Google Scholar 

  12. S.B. Shen, S. Cai, X.G. Bao et al., Biomimetic fluoridated hydroxyapatite coating with micron/nano-topography on magnesium alloy for orthopaedic application. Chem. Eng. J. 339, 7–13 (2018). https://doi.org/10.1016/j.cej.2018.01.083

    Article  CAS  Google Scholar 

  13. M. Rahman, Y.C. Li, C.E. Wen, HA coating on Mg alloys for biomedical applications: a review. J. Magnes. Alloys 8(3), 929–943 (2020). https://doi.org/10.1016/j.jma.2020.05.003

    Article  CAS  Google Scholar 

  14. Y. Wang, X. Li, M. Chen et al., In vitro and in vivo degradation behavior and biocompatibility evaluation of microarc oxidation-fluoridated hydroxyapatite-coated Mg-Zn-Zr-Sr alloy for bone application. ACS Biomater. Sci. Eng. 5(6), 2858–2876 (2019). https://doi.org/10.1021/acsbiomaterials.9b00564

    Article  CAS  Google Scholar 

  15. T.L. Wang, G.Z. Yang, W.C. Zhou et al., One-pot hydrothermal synthesis, in vitro biodegradation and biocompatibility of Sr-doped nanorod/nanowire hydroxyapatite coatings on ZK60 magnesium alloy. J. Alloys Compd. 799, 71–82 (2019). https://doi.org/10.1016/j.jallcom.2019.05.338

    Article  CAS  Google Scholar 

  16. C.R. Arciola, D. Campoccia, L. Montanaro, Implant infections: adhesion, biofilm formation and immune evasion. Nat. Rev. Microbiol. 16(7), 397–409 (2018). https://doi.org/10.1038/s41579-018-0019-y

    Article  CAS  Google Scholar 

  17. U. Filipovic, R.G. Dahmane, S. Ghannouchi et al., Bacterial adhesion on orthopedic implants. Adv. Colloid Interface Sci 283, 102228 (2020). https://doi.org/10.1016/j.cis.2020.102228

    Article  CAS  Google Scholar 

  18. L.S.M. Gomes, Early diagnosis of periprosthetic joint infection of the hip-current status, advances, and perspectives. Revista Brasileira de Ortopedia 54(4), 368–376 (2019). https://doi.org/10.1055/s-0039-1693138

    Article  Google Scholar 

  19. H. Chouirfa, H. Bouloussa, V. Migonney et al., Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomater. 83, 37–54 (2019). https://doi.org/10.1016/j.actbio.2018.10.036

    Article  CAS  Google Scholar 

  20. Y. Shao, R.C. Zeng, S.Q. Li et al., Advance in antibacterial magnesium alloys and surface coatings on magnesium alloys: a review. Acta Metall. Sin. Engl. Lett. 33(5), 615–629 (2020). https://doi.org/10.1007/s40195-020-01044-w

    Article  CAS  Google Scholar 

  21. A. Shanaghi, B. Mehrjou, P.K. Chu, Enhanced corrosion resistance and reduced cytotoxicity of the AZ91 Mg alloy by plasma nitriding and a hierarchical structure composed of ciprofloxacin-loaded polymeric multilayers and calcium phosphate coating. J. Biomed. Mater. Res. A 109(12), 2657–2672 (2021). https://doi.org/10.1002/jbm.a.37258

    Article  CAS  Google Scholar 

  22. F. Peng, D. Wang, D. Zhang et al., PEO/Mg-Zn-Al LDH composite coating on mg alloy as a zn/mg ion-release platform with multifunctions: enhanced corrosion resistance, osteogenic, and antibacterial activities. ACS Biomater. Sci. Eng. 4(12), 4112–4121 (2018). https://doi.org/10.1021/acsbiomaterials.8b01184

    Article  CAS  Google Scholar 

  23. H. Gert, L. Hartmut, P. Claus et al., Pharmacokinetics of ciprofloxacin after oral and parenteral administration. Antimicrob. Agents Chemother. 27, 375–379 (1985)

    Article  Google Scholar 

  24. W.C. Fang, H. Zhang, J.W. Yin et al., Hydroxyapatite crystal formation in the presence of polysaccharide. Cryst. Growth Des. 16(3), 1247–1255 (2016). https://doi.org/10.1021/acs.cgd.5b01235

    Article  CAS  Google Scholar 

  25. X.J. Ji, L. Gao, J.C. Liu et al., Corrosion resistance and antibacterial activity of hydroxyapatite coating induced by ciprofloxacin-loaded polymeric multilayers on magnesium alloy. Prog. Org. Coat. 135, 465–474 (2019). https://doi.org/10.1016/j.porgcoat.2019.06.048

    Article  CAS  Google Scholar 

  26. B. Zheng, J. Ou, H. Li et al., Preparation of phosphate ion-doped Zn–Fe-layered double hydroxide with corrosion resistance and inducing Ca–P deposition on AZ31 Mg alloy. J. Mater. Res. 37(3), 763–772 (2022). https://doi.org/10.1557/s43578-021-00434-9

    Article  CAS  Google Scholar 

  27. Y. Ren, H. Zhou, M. Nabiyouni et al., Rapid coating of AZ31 magnesium alloy with calcium deficient hydroxyapatite using microwave energy. Mater. Sci. Eng. C 49, 364–372 (2015). https://doi.org/10.1016/j.msec.2015.01.046

    Article  CAS  Google Scholar 

  28. H.R. Bakhsheshi-Rad, Z. Hadisi, E. Hamzah et al., Drug delivery and cytocompatibility of ciprofloxacin loaded gelatin nanofibers-coated Mg alloy. Mater. Lett. 207, 179–182 (2017). https://doi.org/10.1016/j.matlet.2017.07.072

    Article  CAS  Google Scholar 

  29. H.R. Bakhsheshi-Rad, X.B. Chen, A.F. Ismail et al., A new multifunctional monticellite-ciprofloxacin scaffold: preparation, bioactivity, biocompatibility, and antibacterial properties. Mater. Chem. Phys. 222, 118–131 (2019). https://doi.org/10.1016/j.matchemphys.2018.09.054

    Article  CAS  Google Scholar 

  30. L.M. Blandon, G.A. Islan, G.R. Castro et al., Kefiran-alginate gel microspheres for oral delivery of ciprofloxacin. Colloids Surf B 145, 706–715 (2016). https://doi.org/10.1016/j.colsurfb.2016.05.078

    Article  CAS  Google Scholar 

  31. K. Kandori, A. Masunari, T. Ishikawa, Study on adsorption mechanism of proteins onto synthetic calcium hydroxyapatites through ionic concentration measurements. Calcif. Tissue Int. 76(3), 194–206 (2005). https://doi.org/10.1007/s00223-004-0102-4

    Article  CAS  Google Scholar 

  32. J. Zhu, R. Xiong, F. Zhao et al., Lightweight, high-strength, and anisotropic structure composite aerogel based on hydroxyapatite nanocrystal and chitosan with thermal insulation and flame retardant properties. ACS Sustain. Chem. Eng. 8(1), 71–83 (2019). https://doi.org/10.1021/acssuschemeng.9b03953

    Article  CAS  Google Scholar 

  33. A.C. de Almeida, C. Torquetti, P.O. Ferreira et al., Cocrystals of ciprofloxacin with nicotinic and isonicotinic acids: mechanochemical synthesis, characterization, thermal and solubility study. Thermochim. Acta (2020). https://doi.org/10.1016/j.tca.2019.178346

    Article  Google Scholar 

  34. Y.L. Song, H.Y. Wang, Q. Liu et al., Sodium dodecyl sulfate (SDS) intercalated Mg-Al layered double hydroxides film to enhance the corrosion resistance of AZ31 magnesium alloy. Surf. Coat. Technol. 422, 127524 (2021)

    Article  CAS  Google Scholar 

  35. S. Liu, X. Han, H. Liu et al., Incorporation of ion exchange functionalized-montmorillonite into solid lipid nanoparticles with low irritation enhances drug bioavailability for glaucoma treatment. Drug Deliv. 27(1), 652–661 (2020). https://doi.org/10.1080/10717544.2020.1756984

    Article  CAS  Google Scholar 

  36. M. Sun, C. Zhu, J. Long et al., PLGA microsphere-based composite hydrogel for dual delivery of ciprofloxacin and ginsenoside Rh2 to treat Staphylococcus aureus-induced skin infections. Drug Deliv. 27(1), 632–641 (2020). https://doi.org/10.1080/10717544.2020.1756985

    Article  CAS  Google Scholar 

  37. M.G. Arafa, H.A. Mousa, N.N. Afifi, Preparation of PLGA-chitosan based nanocarriers for enhancing antibacterial effect of ciprofloxacin in root canal infection. Drug Deliv. 27(1), 26–39 (2020). https://doi.org/10.1080/10717544.2019.1701140

    Article  CAS  Google Scholar 

  38. E. Palierse, C. Helary, J.M. Krafft et al., Baicalein-modified hydroxyapatite nanoparticles and coatings with antibacterial and antioxidant properties. Mater. Sci. Eng. C 118, 111537 (2021). https://doi.org/10.1016/j.msec.2020.111537

    Article  CAS  Google Scholar 

  39. G.F. Zhang, X. Liu, S. Zhang et al., Ciprofloxacin derivatives and their antibacterial activities. Eur. J. Med. Chem. 146, 599–612 (2018). https://doi.org/10.1016/j.ejmech.2018.01.078

    Article  CAS  Google Scholar 

  40. Y.H. Zou, J. Wang, L.Y. Cui et al., Corrosion resistance and antibacterial activity of zinc-loaded montmorillonite coatings on biodegradable magnesium alloy AZ31. Acta Biomater. 98, 196–214 (2019). https://doi.org/10.1016/j.actbio.2019.05.069

    Article  CAS  Google Scholar 

  41. M.M. Masadeh, K.H. Alzoubi, O.F. Khabour et al., Ciprofloxacin-induced antibacterial activity is attenuated by phosphodiesterase inhibitors. Curr. Therap. Res 77, 14–17 (2015)

    Article  CAS  Google Scholar 

  42. Y. Cui, Z. Wang, Z. Li et al., Functionalized anti-osteoporosis drug delivery system enhances osseointegration of an inorganic–organic bioactive interface in osteoporotic microenvironment. Mater. Des. (2021). https://doi.org/10.1016/j.matdes.2021.109753

    Article  Google Scholar 

  43. O. Tsigkou, J.R. Jones, J.M. Polak et al., Differentiation of fetal osteoblasts and formation of mineralized bone nodules by 45S5 Bioglass conditioned medium in the absence of osteogenic supplements. Biomaterials 30(21), 3542–3550 (2009). https://doi.org/10.1016/j.biomaterials.2009.03.019

    Article  CAS  Google Scholar 

  44. B. Li, P. Gao, H. Zhang et al., Osteoimmunomodulation, osseointegration, and in vivo mechanical integrity of pure Mg coated with HA nanorod/pore-sealed MgO bilayer. Biomater. Sci. 6(12), 3202–3218 (2018). https://doi.org/10.1039/c8bm00901e

    Article  CAS  Google Scholar 

  45. M. Mizuno, R. Fujisawa, Y. Kuboki, Type I collagen-induced osteoblastic differentiation of bone-marrow cells mediated by collagen-?2?1 integrin interaction. J. Cell. Physiol. 184(2), 207–213 (2000). https://doi.org/10.1002/1097-4652(200008)184:2%3c207::Aid-jcp8%3e3.0.Co;2-u

    Article  CAS  Google Scholar 

  46. A. Dolatshahi-Pirouz, T. Jensen, D.C. Kraft et al., Fibronectin adsorption, cell adhesion, and proliferation on nanostructured tantalum surfaces. ACS Nano 4(5), 2874–2882 (2010). https://doi.org/10.1021/nn9017872

    Article  CAS  Google Scholar 

  47. R. Civitelli, Cell-cell communication in the osteoblast/osteocyte lineage. Arch. Biochem. Biophys. 473(2), 188–192 (2008). https://doi.org/10.1016/j.abb.2008.04.005

    Article  CAS  Google Scholar 

  48. Z.-Y. Ding, L.-Y. Cui, X.-B. Chen et al., In vitro corrosion of micro-arc oxidation coating on Mg-1Li-1Ca alloy—the influence of intermetallic compound Mg2Ca. J. Alloy. Compd. 764, 250–260 (2018). https://doi.org/10.1016/j.jallcom.2018.06.073

    Article  CAS  Google Scholar 

  49. Z. Shi, M. Liu, A. Atrens, Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation. Corros. Sci. 52(2), 579–588 (2010). https://doi.org/10.1016/j.corsci.2009.10.016

    Article  CAS  Google Scholar 

  50. A.A.Z. Shi, An innovative specimen configuration for the study of Mg corrosion. Corros. Sci. 53, 226–246 (2011). https://doi.org/10.1016/j.corsci.2010.09.016

    Article  CAS  Google Scholar 

  51. Z. Mao, L. Ma, C. Gao et al., Preformed microcapsules for loading and sustained release of ciprofloxacin hydrochloride. J. Control Release 104(1), 193–202 (2005). https://doi.org/10.1016/j.jconrel.2005.02.005

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the support of experiments works by project China Scholarship Council (CSC 201908450006) under start 2021 program, Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices (20KF-25), and the Natural Science Foundation of Guangxi (2016GXNSFDA380026).

Funding

Funding was provided by China Sponsorship Council (CSC 201908450006) and Natural Science Foundation of Guangxi Province (2016GXNSFDA380026).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Ou or Chong Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 799 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, B., Li, H., Wang, J. et al. Layered double hydroxide/hydroxyapatite-ciprofloxacin composite coating on AZ31 magnesium alloy: Corrosion resistance, antibacterial, osteogenesis. Journal of Materials Research 37, 1810–1824 (2022). https://doi.org/10.1557/s43578-022-00588-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00588-0

Navigation