Skip to main content
Log in

The discrepancy between the indentation curves obtained by the finite element method calculation with a Berkovich and a conical indenter

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanoindentation is an experimental technique used for the determination of Young modulus. The commonly used Oliver-Pharr analysis based on the assumption of the equivalence of indentation curves obtained with a Berkovich and a conical indenter is employed. Nevertheless, a break-down of this equivalence in projected area between the pyramidal and conical geometry was found. This discrepancy leads to an overestimation of Young modulus and needs to be corrected with coefficient \(\beta\). It corrects the difference between Young modulus from the conical and the Berkovich indentation but cannot correct the indentation curves. This paper aims at the FEM study of modelling of the nanoindentation test, the influence of the Oliver-Pharr analysis assumptions, the comparison and unification of the different values of \(\beta\) for the Berkovich and the conical indentation with a rigid and a diamond indenter, the correction of the indentation curves, and the explanation of the differences between the FEM calculated and experimentally measured indentation curves.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

The datasets generated or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. S.W. Moore, M.T. Manzari, Y.-L. Shen, Int J Smart Nano Mater 1, 2 (2010). https://doi.org/10.1080/19475411003589889

    Article  Google Scholar 

  2. A.M.S. Dias, G.C.D. Godoy, Mater. Sci. Forum (2010). https://doi.org/10.4028/www.scientific.net/MSF.636-637.1186

    Article  Google Scholar 

  3. K.-D. Bouzakis, N. Michailidis, S. Hadjiyiannis, G. Skordaris, G. Erkens, Mater. Charact. 49, 2 (2002). https://doi.org/10.1016/S1044-5803(02)00361-3

    Article  CAS  Google Scholar 

  4. T. Chudoba, P. Schwaller, R. Rabe, J.-M. Breguet, J. Michler, Philos. Mag. 86, 33–35 (2006). https://doi.org/10.1080/14786430600746424

    Article  CAS  Google Scholar 

  5. Y.J. Park, G.M. Pharr, Thin Solid Films (2004). https://doi.org/10.1016/S0040-6090(03)01102-7

    Article  Google Scholar 

  6. S. Pathak, S.R. Kalidindi, Mater. Sci. Eng. R Rep. (2015). https://doi.org/10.1016/j.mser.2015.02.001

    Article  Google Scholar 

  7. A.C. Fisher-Cripps, Nanoindentation (2004). https://doi.org/10.1007/978-1-4757-5943-3_2

    Article  Google Scholar 

  8. Z. Shi, X. Feng, Y. Huang, J. Xiao, K.C. Hwang, Int. J. Plast. 26, 1 (2010). https://doi.org/10.1016/j.ijplas.2009.06.008

    Article  CAS  Google Scholar 

  9. W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 6 (1992). https://doi.org/10.1557/JMR.1992.1564

    Article  Google Scholar 

  10. S. Shim, W.C. Oliver, G.M. Pharr, Int. J. Surf. Sci. Eng. 1, 2–3 (2007). https://doi.org/10.1504/IJSURFSE.2007.015028

    Article  Google Scholar 

  11. W.C. Oliver, G.M. Pharr, J. Mater. Res. 19, 1 (2004). https://doi.org/10.1557/jmr.2004.19.1.3

    Article  Google Scholar 

  12. D. Torres-Torres, J. Muñoz-Saldaña, L.A. Gutierrez-Ladron-de Guevara, A. Hurtado-Macías, M.V. Swain, Model Simul. Mat. Sci. Eng. 18, 7 (2010). https://doi.org/10.1088/0965-0393/18/7/075006

  13. C. Shi, H. Zhao, H. Huang, L. Xu, L. Ren, M. Bai, J. Li, X. Hu, Mater. Trans. 54(6), 958–963 (2013). https://doi.org/10.2320/matertrans.M2012400

    Article  CAS  Google Scholar 

  14. J. Kovář, V. Fuis, J. Tomáštík, Acta Polytech. CTU Proc. (2020). https://doi.org/10.14311/APP.2020.27.0131

    Article  Google Scholar 

  15. J. Krier, J. Breuils, L. Jacomine, H. Pelletier, J. Mater. Res. 27, 1 (2012). https://doi.org/10.1557/jmr.2011.387

    Article  CAS  Google Scholar 

  16. M. Jamal, M.N. Morgan, Inventions 4, 3 (2019). https://doi.org/10.3390/inventions4030040

    Article  Google Scholar 

  17. G.M. Pharr, A. Bolshakov, J. Mater. Res. 17, 10 (2002). https://doi.org/10.1557/JMR.2002.0386

    Article  Google Scholar 

  18. K.R. Gadelrab, M. Chiesa, F.A. Bonilla, J. Mater. Res. 27, 1 (2012). https://doi.org/10.1557/jmr.2011.229

    Article  CAS  Google Scholar 

  19. N.A. Sakharova, J.V. Fernandes, J.M. Antunes, M.C. Oliveira, Int. J. Solids Struct. 46, 5 (2009). https://doi.org/10.1016/j.ijsolstr.2008.10.032

    Article  Google Scholar 

  20. T. Andriollo, J. Thorborg, J. Hattel, Model. Simulat. Mater. Sci. Eng. 25, 4 (2017). https://doi.org/10.1088/1361-651X/aa6831

    Article  Google Scholar 

  21. J.C. Hay, A. Bolshakov, G.M. Pharr, J. Mater. Res. 14, 6 (1999). https://doi.org/10.1557/JMR.1999.0306

    Article  Google Scholar 

  22. Y. Tanaka, Y. Seino, K. Hattori, ACTA IMEKO 9(5), 265–269 (2020). https://doi.org/10.21014/acta_imeko.v9i5.982

    Article  Google Scholar 

  23. T. Chudoba, N.M. Jennett, J. Phys. D Appl. Phys. 41, 21 (2008). https://doi.org/10.1088/0022-3727/41/21/215407

    Article  CAS  Google Scholar 

  24. R.B. King, Int. J. Solids. Struct. 23, 12 (1987). https://doi.org/10.1016/0020-7683(87)90116-8

    Article  Google Scholar 

  25. J.J. Vlassak, W.D. Nix, J. Mech. Phys. Solids 42, 8 (1994). https://doi.org/10.1016/0022-5096(94)90033-7

    Article  Google Scholar 

  26. I.N. Sneddon, Int. J. Eng. Sci. 3, 1 (1965). https://doi.org/10.1016/0022-5096(94)90033-710.1016/0020-7225(65)90019-4

    Article  Google Scholar 

  27. P.-L. Larsson, A.E. Giannakopoulos, E. Söderlund, D.J. Rowcliffe, R. Vestergaard, Int. J. Solids Struct. 33, 2 (1996). https://doi.org/10.1016/0020-7683(95)00033-7

    Article  Google Scholar 

  28. K.R. Gadelrab, F.A. Bonilla, M. Chiesa, J. Non-Cryst. Solids 358(2), 392–398 (2012). https://doi.org/10.1016/j.jnoncrysol.2011.10.011

    Article  CAS  Google Scholar 

  29. Load controlled vs displacement controlled models – which one to use in FEA? (2021). https://featips.com/

  30. B. Beake, A. Harris, T. Liskiewicz, Mater. Charact. 1, 89 (2015). https://doi.org/10.1201/b19177-2

    Article  Google Scholar 

  31. Technical Glass Products, Inc. (TGP) (2021). https://technicalglass.com/technical_properties/

  32. Atlas of stress-strain curves, 2nd Edition (ASM International, Materials Park OH, USA, 2002).

  33. J. Kovář, V. Fuis, R. Čtvrtlík, Eng. Mech. (Brno, 2020). https://doi.org/10.21495/5896-3-298

Download references

Acknowledgments

This study was realized with the support by the grant FSI-S-20-6164 and with the institutional support RVO: 61388998. The authors also gratefully acknowledge the support by the Operational Program Research, Development and Education, projects No. CZ.02.1.01/0.0/0.0/17_049/0008422 and No. CZ.02.1.01/0.0/0.0/16_019/0000754 of the Ministry of Education, Youth and Sports of the Czech Republic. RČ and JT also thank the project No. TN01000038 of the Technology Agency of the Czech Republic for support of their workplace.

Funding

This study was realized with the support by the grant FSI-S-20–6164 and with the institutional support RVO: 61388998. The authors also gratefully acknowledge the support by the Operational Program Research, Development and Education, Projects No. CZ.02.1.01/0.0/0.0/17_049/0008422 and No. CZ.02.1.01/0.0/0.0/16_019/0000754 of the Ministry of Education, Youth and Sports of the Czech Republic. RČ and JT also thank the Project No. TN01000038 of the Technology Agency of the Czech Republic for support of their workplace.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study and writing the paper. The FEM calculations and calculations of the correction factors were done by JK and VF. The experimental analysis and evaluation of the results of nanoindentation were done by RČ and JT. The concept of the paper was designed by JK, VF and RČ. The first draft of the manuscript was written by JK and all authors commented, read and approved the final manuscript.

Corresponding author

Correspondence to Jaroslav Kovář.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovář, J., Fuis, V., Čtvrtlík, R. et al. The discrepancy between the indentation curves obtained by the finite element method calculation with a Berkovich and a conical indenter. Journal of Materials Research 37, 1750–1761 (2022). https://doi.org/10.1557/s43578-022-00574-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00574-6

Navigation