Skip to main content
Log in

Influence of g-C3N4 doping on the NH3-SCR activity of Cerium–tungsten–titanium mixed oxide catalyst

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Herein, graphitic carbon nitride (g-C3N4) was firstly introduced to optimize the NH3-SCR activity of Ce20W10Ti100Oz by adding excess melamine (Mel) into its mixed solution after the hydrothermal co-precipitation. The results indicate that both the modification of Mel and the doping of g-C3N4 contribute to improve the catalytic performance of NOx reduction over Ce20W10Ti100Oz when the mass ratios of Mel and Ti(SO4)2 were kept at 4:2 and 8:2, respectively. Furthermore, the results of XPS demonstrate that the doped g-C3N4 could increase the concentration of adsorbed oxygen on the surface of Ce20W10Ti100Oz, and Ce20W10Ti100Oz–Mel4 presents higher proportion of adsorbed oxygen (44.4%) compared to Ce20W10Ti100Oz–Mel2. Therefore, there exists a synergistic effect between the doped g-C3N4 and the active components of Ce/W/Ti, which helps improve the NH3-SCR activity of Ce20W10Ti100Oz, although the presence of cerium-tungsten-titanium mixed oxide shows the catalytic effect on the thermal decomposition of the doped g-C3N4 in it.

Graphical abstract

Promotional effect of g-C3N4 doping on the NH3-SCR activity of cerium–tungsten–titanium composite oxide catalyst prepared by hydrothermal co-precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

References

  1. Q.J. Jin, Y.S. Shen, S.M. Zhu, H.Y. Li, Y.B. Li, Rare earth ions (La, Nd, Sm, Gd, and Tm) regulate the catalytic performance of CeO2/Al2O3 for NH3-SCR of NO. J. Mater. Res. 32, 2438–2445 (2017). https://doi.org/10.1557/jmr.2017.125

    Article  CAS  Google Scholar 

  2. R. Liu, L.C. Ji, Y.F. Xu, F. Ye, F. Jia, Catalytic performance and SO2 tolerance of tetragonal-zirconia-based catalysts for low-temperature selective catalytic reduction. J. Mater. Res. 31, 2590–2597 (2016). https://doi.org/10.1557/jmr.2016.283

    Article  CAS  Google Scholar 

  3. C.M. Chen, Y. Cao, S.T. Liu, J.M. Chen, W.B. Jia, SCR catalyst doped with copper for synergistic removal of slip ammonia and elemental mercury. Fuel Process. Technol. 181, 268–278 (2018). https://doi.org/10.1016/j.fuproc.2018.09.025

    Article  CAS  Google Scholar 

  4. M. Zhou, G.H. Dong, F.K. Yu, Y. Huang, The deep oxidation of NO was realized by Sr multi-site doped g-C3N4 via photocatalytic method. Appl. Catal. B Environ. 256, 117825 (2019). https://doi.org/10.1016/j.apcatb.2019.117825

    Article  CAS  Google Scholar 

  5. X. Wu, L.L. Liu, J.N. Liu, B.H. Hou, Y.L. Du, X.M. Xie, NiMn mixed oxides with enhanced low-temperature deNOx performance: Insight into the coordinated decoration of MnOx by NiO phase via glycine combustion method. Appl. Catal. A Gen. 610, 117918 (2021). https://doi.org/10.1016/j.apcata.2020.117918

    Article  CAS  Google Scholar 

  6. A. Yamamoto, K. Teramura, T. Tanaka, Selective catalytic reduction of NO by NH3 over photocatalysts (photo-SCR): mechanistic investigations and developments. Chem. Rec. 16, 2268–2277 (2016). https://doi.org/10.1002/tcr.201600041

    Article  CAS  Google Scholar 

  7. X. Wu, Y.L. Feng, Y.L. Du, X.Z. Liu, C.L. Zou, Z. Li, Enhancing DeNOx performance of CoMnAl mixed metal oxides in low-temperature NH3-SCR by optimizing layered double hydroxides (LDHs) precursor template. Appl. Surf. Sci. 467–468, 802–810 (2019). https://doi.org/10.1016/j.apsusc.2018.10.191

    Article  CAS  Google Scholar 

  8. Z.C. Xu, Y.R. Li, J.X. Guo, J. Xiong, Y.T. Lin, T.Y. Zhu, An efficient and sulfur resistant K-modified activated carbon for SCR denitrification compared with acid- and Cu-modified activated carbon. Chem. Eng. J. 395, 125047 (2020). https://doi.org/10.1016/j.cej.2020.125047

    Article  CAS  Google Scholar 

  9. H.X. Jiang, L. Zhang, J. Zhao, Y.H. Li, M.H. Zhang, Study on MnOx–FeOy composite oxide catalysts prepared by supercritical antisolvent process for low-temperature selective catalytic reduction of NOx. J. Mater. Res. 31, 702–712 (2016). https://doi.org/10.1557/jmr.2016.51

    Article  CAS  Google Scholar 

  10. L. Chen, J. Yang, S. Ren, Z.C. Chen, Y.H. Zhou, W.Z. Liu, Effects of Sm modification on biochar supported Mn oxide catalysts for low-temperature NH3-SCR of NO. J. Energy Inst. 98, 234–243 (2021). https://doi.org/10.1016/j.joei.2021.07.003

    Article  CAS  Google Scholar 

  11. X.B. Wang, R.B. Duan, W. Liu, D.W. Wang, B.R. Wang, Y.R. Xu, C.H. Niu, J.W. Shi, The insight into the role of CeO2 in improving low-temperature catalytic performance and SO2 tolerance of MnCoCeOx microflowers for the NH3-SCR of NOx. Appl. Surf. Sci. 510, 145517 (2020). https://doi.org/10.1016/j.apsusc.2020.145517

    Article  CAS  Google Scholar 

  12. S.B. Ma, H.S. Tan, Y.S. Li, P.Q. Wang, C. Zhao, X.Y. Niu, Y.J. Zhu, Excellent low-temperature NH3-SCR NO removal performance and enhanced H2O resistance by Ce addition over the Cu0.02Fe0.2CeyTi1yOx (y = 0.1, 0.2, 0.3) catalysts. Chemosphere 243, 125309 (2020). https://doi.org/10.1016/j.chemosphere.2019.125309

    Article  CAS  Google Scholar 

  13. C.X. Li, Z.B. Xiong, J.F. He, X.Q. Qu, Z.Z. Li, X. Ning, W. Lu, S.M. Wu, L.Z. Tan, Influence of ignition atmosphere on the structural properties of magnetic iron oxides synthesized via solution combustion and the NH3-SCR activity of W/Fe2O3 catalyst. Appl. Catal. A Gen. 602, 117726 (2020). https://doi.org/10.1016/j.apcata.2020.117726

    Article  CAS  Google Scholar 

  14. Y.Q. Li, P. Jiang, J.Q. Tian, Y. Liu, Y.J. Wan, K. Zhang, D.H. Wang, J.M. Dan, B. Dai, X.L. Wang, F. Yu, 3D-printed monolithic catalyst of Mn-Ce-Fe/attapulgite for selective catalytic reduction of nitric oxide with ammonia at low temperature. J. Environ. Chem. Eng. 9, 105753 (2021). https://doi.org/10.1016/j.jece.2021.105753

    Article  CAS  Google Scholar 

  15. L. Chen, Z.C. Si, X.D. Wu, D. Weng, DRIFT study of CuO-CeO2-TiO2 mixed oxides for NOx reduction with NH3 at low temperatures. ACS Appl. Mater. Interfaces 6, 8134–8145 (2014). https://doi.org/10.1021/am5004969

    Article  CAS  Google Scholar 

  16. Y.C. Pan, Y.S. Shen, Q.J. Jin, S.M. Zhu, Promotional effect of Ba additives on MnCeOx/TiO2 catalysts for NH3-SCR of NO at low temperature. J. Mater. Res. 33, 2414–2422 (2018). https://doi.org/10.1557/jmr.2018.179

    Article  CAS  Google Scholar 

  17. W.P. Shan, Y. Geng, X.L. Chen, N. Huang, F.D. Liu, S.J. Yang, A highly efficient CeWOx catalyst for the selective catalytic reduction of NOx with NH3. Catal. Sci. Technol. 6, 1195–1200 (2016). https://doi.org/10.1039/C5CY01282A

    Article  CAS  Google Scholar 

  18. H.L. Huang, W.P. Shan, S.J. Yang, J.H. Zhang, Novel approach for a cerium-based highly-efficient catalyst with excellent NH3-SCR performance. Catal. Sci. Technol. 4, 3611–3614 (2014). https://doi.org/10.1039/C4CY00926F

    Article  CAS  Google Scholar 

  19. C.X. Liu, L. Chen, H.Z. Chang, L. Ma, Y. Peng, H. Arandiyan, J.H. Li, Characterization of CeO2-WO3 catalysts prepared by different methods for selective catalytic reduction of NOx with NH3. Catal. Commun. 40, 145–148 (2013). https://doi.org/10.1016/j.catcom.2013.06.017

    Article  CAS  Google Scholar 

  20. L.L. Li, P.X. Li, W. Tan, K.L. Ma, W.X. Zou, C.J. Tang, L. Dong, Enhanced low-temperature NH3-SCR performance of CeTiOx catalyst via surface Mo modification. Chin. J. Catal. 41, 364–373 (2020). https://doi.org/10.1016/S1872-2067(19)63437-6

    Article  CAS  Google Scholar 

  21. S.H. Li, B.C. Huang, C.L. Yu, A CeO2-MnOx core-shell catalyst for low-temperature NH3-SCR of NO. Catal. Commun. 98, 47–51 (2017). https://doi.org/10.1016/j.catcom.2017.04.046

    Article  CAS  Google Scholar 

  22. Q.J. Jin, Y.S. Shen, S.M. Zhu, X.H. Li, M. Hu, Promotional effects of Er incorporation in CeO2(ZrO2)/TiO2 for selective catalytic reduction of NO by NH3. Chin. J. Catal. 37, 1521–1528 (2016). https://doi.org/10.1016/S1872-2067(16)62450-6

    Article  CAS  Google Scholar 

  23. S.L. Zhang, Q. Zhong, Y.G. Shen, L. Zhu, J. Ding, New insight into the promoting role of process on the CeO2-WO3/TiO2 catalyst for NO reduction with NH3 at low-temperature. J. Colloid Interface Sci. 448, 417–426 (2015). https://doi.org/10.1016/j.jcis.2015.02.038

    Article  CAS  Google Scholar 

  24. T.Y. Zhao, Z.P. Xing, Z.Y. Xiu, Z.Z. Li, S.L. Yang, Q. Zhu, W. Zhou, Surface defect and rational design of TiO2−x nanobelts/g-C3N4 nanosheets/CdS quantum dots hierarchical structure for enhanced visible-light-driven photocatalysis. Int. J. Hydrog. Energy 44, 1586–1596 (2019). https://doi.org/10.1016/j.ijhydene.2018.11.152

    Article  CAS  Google Scholar 

  25. D.M. Luo, S.S. Liu, J.J. Liu, J.X. Zhao, C. Miao, J. Ren, Catalytic combustion of toluene over cobalt oxides supported on graphitic carbon nitride (CoOx/g-C3N4) catalyst. Ind. Eng. Chem. Res. 57, 11920–11928 (2018). https://doi.org/10.1021/acs.iecr.8b02625

    Article  CAS  Google Scholar 

  26. J.Q. Wu, W.M. Hua, Y.H. Yue, Z. Gao, Efficient aerobic oxidation of ethyl lactate to ethyl pyruvate over V2O5/g-C3N4 catalysts. ACS Omega 5, 16200–16207 (2020). https://doi.org/10.1021/acsomega.0c01822

    Article  CAS  Google Scholar 

  27. J.Q. Wen, J. Xie, X.B. Chen, X. Li, A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 391, 72–123 (2017). https://doi.org/10.1016/j.apsusc.2016.07.030

    Article  CAS  Google Scholar 

  28. S. Panneri, P. Ganguly, B.N. Nair, A.A.P. Mohamed, K.G. Warrier, U.N.S. Hareesh, Copyrolysed C3N4-Ag/ZnO ternary heterostructure systems for enhanced adsorption and photocatalytic degradation of tetracycline. Eur. J. Inorg. Chem. 2016, 5068–5076 (2016). https://doi.org/10.1002/ejic.201600646

    Article  CAS  Google Scholar 

  29. M.J. Muñoz-Batista, M. Fernández-García, A. Kubacka, Promotion of CeO2-TiO2 photoactivity by g-C3N4: ultraviolet and visible light elimination of toluene. Appl. Catal. B Environ. 164, 261–270 (2015). https://doi.org/10.1016/j.apcatb.2014.09.037

    Article  CAS  Google Scholar 

  30. Y. Yuan, G.F. Huang, W.Y. Hu, D.N. Xiong, B.X. Zhou, S.L. Chang, W.Q. Huang, Construction of g-C3N4/CeO2/ZnO ternary photocatalysts with enhanced photocatalytic performance. J. Phys. Chem. Solids 106, 1–9 (2017). https://doi.org/10.1016/j.jpcs.2017.02.015

    Article  CAS  Google Scholar 

  31. Y. Yu, Y.F. Bu, Q. Zhong, W. Cai, Catalytic oxidation of NO by g-C3N4-assisted electrospun porous carbon nanofibers at room temperature: structure-activity relationship and mechanism study. Catal. Commun. 87, 62–65 (2016). https://doi.org/10.1016/j.catcom.2016.08.037

    Article  CAS  Google Scholar 

  32. P. Chen, F. Dong, M.X. Ran, J.R. Li, Synergistic photo-thermal catalytic NO purification of MnOx /g-C3N4: enhanced performance and reaction mechanism. Chin. J. Catal. 39, 619–629 (2018). https://doi.org/10.1016/S1872-2067(18)63029-3

    Article  Google Scholar 

  33. H.Z. Wu, S. Bandaru, J. Liu, L.L. Li, Z.L. Wang, Adsorption of H2O, H2, O2, CO, NO, and CO2 on graphene/g-C3N4 nanocomposite investigated by density functional theory. Appl. Surf. Sci. 430, 125–136 (2018). https://doi.org/10.1016/j.apsusc.2017.06.073

    Article  CAS  Google Scholar 

  34. Y.H. Li, W.K. Ho, K.L. Lv, B.C. Zhu, S.C. Lee, Carbon vacancy-induced enhancement of the visible light-driven photocatalytic oxidation of NO over g-C3N4 nanosheets. Appl. Surf. Sci. 430, 380–389 (2018). https://doi.org/10.1016/j.apsusc.2017.06.054

    Article  CAS  Google Scholar 

  35. Y.B. Liu, Y. Ma, D. Weng, X.D. Wu, Z.C. Si, Pt@g-C3N4/CeO2 photocatalyst for the remediation of low concentration NOx at room temperature. Prog. Nat. Sci. Mater. Int. 30, 308–311 (2020). https://doi.org/10.1016/j.pnsc.2020.03.003

    Article  CAS  Google Scholar 

  36. J. Liu, Z.B. Xiong, F. Zhou, W. Lu, J. Jin, S.F. Ding, Promotional effect of H2O2 modification on the cerium-tungsten-titanium mixed oxide catalyst for selective catalytic reduction of NO with NH3. J. Phys. Chem. Solids 121, 360–366 (2018). https://doi.org/10.1016/j.jpcs.2018.05.051

    Article  CAS  Google Scholar 

  37. I. Papailias, T. Giannakopoulou, N. Todorova, D. Demotikali, T. Vaimakis, C. Trapalis, Effect of processing temperature on structure and photocatalytic properties of g-C3N4. Appl. Surf. Sci. 358, 278–286 (2015). https://doi.org/10.1016/j.apsusc.2015.08.097

    Article  CAS  Google Scholar 

  38. L.Y. Lu, G.H. Wang, M. Zou, J. Wang, J. Li, Effects of calcining temperature on formation of hierarchical TiO2/g-C3N4 hybrids as an effective Z-scheme heterojunction photocatalyst. Appl. Surf. Sci. 441, 1012–1023 (2018). https://doi.org/10.1016/j.apsusc.2018.02.080

    Article  CAS  Google Scholar 

  39. C.X. Li, Z.B. Xiong, Y.P. Du, X. Ning, Z.Z. Li, J.F. He, X.K. Qu, W. Lu, S.M. Wu, L.Z. Tan, Promotional effect of tungsten modification on magnetic iron oxide catalyst for selective catalytic reduction of NO with NH3. J. Energy Inst. 93, 1809–1818 (2020). https://doi.org/10.1016/j.joei.2020.03.012

    Article  CAS  Google Scholar 

  40. P.V. Bakre, S.G. Tilve, R.N. Shirsat, Influence of N sources on the photocatalytic activity of N-doped TiO2. Arab. J. Chem. 13, 7637–7651 (2020). https://doi.org/10.1016/j.arabjc.2020.09.001

    Article  CAS  Google Scholar 

  41. W.P. Shan, F.D. Liu, H. He, X.Y. Shi, C.B. Zhang, A superior Ce-W-Ti mixed oxide catalyst for the selective catalytic reduction of NOx with NH3. Appl. Catal. B Environ. 115–116, 100–106 (2012). https://doi.org/10.1016/j.apcatb.2011.12.019

    Article  CAS  Google Scholar 

  42. W.P. Shan, F.D. Liu, H. He, X.Y. Shi, C.B. Zhang, An environmentally-benign CeO2-TiO2 catalyst for the selective catalytic reduction of NOx with NH3 in simulated diesel exhaust. Catal. Today 184, 160–165 (2012). https://doi.org/10.1016/j.cattod.2011.11.013

    Article  CAS  Google Scholar 

  43. B. Chai, C. Liu, J.T. Yan, Z.D. Ren, Z.J. Wang, In-situ synthesis of WO3 nanoplates anchored on g-C3N4 Z-scheme photocatalysts for significantly enhanced photocatalytic activity. Appl. Surf. Sci. 448, 1–8 (2018). https://doi.org/10.1016/j.apsusc.2018.04.116

    Article  CAS  Google Scholar 

  44. J.K. Jia, C.Y. Jiang, X.R. Zhang, P.J. Li, J. Xiong, Z. Zhang, T. Wu, Y.P. Wang, Urea-modified carbon quantum dots as electron mediator decorated g-C3N4/WO3 with enhanced visible-light photocatalytic activity and mechanism insight. Appl. Surf. Sci. 495, 143524 (2019). https://doi.org/10.1016/j.apsusc.2019.07.266

    Article  CAS  Google Scholar 

  45. J.Y. Xu, Y.X. Li, S.Q. Peng, G.X. Lu, S.B. Li, Eosin Y-sensitized graphitic carbon nitride fabricated by heating urea for visible light photocatalytic hydrogen evolution: the effect of the pyrolysis temperature of urea. Phys. Chem. Chem. Phys. 15, 7657–7665 (2013). https://doi.org/10.1039/c3cp44687e

    Article  CAS  Google Scholar 

  46. L.H. Tan, J.H. Xu, X.J. Zhang, Z.S. Hang, Y.Q. Jia, S.B. Wang, Synthesis of g-C3N4/CeO2 nanocomposites with improved catalytic activity on the thermal decomposition of ammonium perchlorate. Appl. Surf. Sci. 356, 447–453 (2015). https://doi.org/10.1016/j.apsusc.2015.08.078

    Article  CAS  Google Scholar 

  47. F. Dong, M.Y. Ou, Y.K. Jiang, S. Guo, Z.B. Wu, Efficient and durable visible light photocatalytic performance of porous carbon nitride nanosheets for air purification. Ind. Eng. Chem. Res. 53, 2318–2330 (2014). https://doi.org/10.1021/ie4038104

    Article  CAS  Google Scholar 

  48. X.H. Wu, D.D. Gao, H.G. Yu, J.G. Yu, High-yield lactic acid-mediated route for a g-C3N4 nanosheet photocatalyst with enhanced H2-evolution performance. Nanoscale 11, 9608–9616 (2019). https://doi.org/10.1039/C9NR00887J

    Article  CAS  Google Scholar 

  49. X. Nie, G.Y. Li, P.K. Wong, H.J. Zhao, T. An, Synthesis and characterization of N-doped carbonaceous/TiO2 composite photoanodes for visible-light photoelectrocatalytic inactivation of Escherichia coli K-12. Catal. Today 230, 67–73 (2014). https://doi.org/10.1016/j.cattod.2013.09.046

    Article  CAS  Google Scholar 

  50. K. Saravanakumar, R. Karthik, S.M. Chen, J. Vinoth Kumar, K. Prakash, V. Muthuraj, Construction of novel Pd/CeO2/g-C3N4 nanocomposites as efficient visible-light photocatalysts for hexavalent chromium detoxification. J. Colloid Interface Sci. 504, 514–526 (2017). https://doi.org/10.1016/j.jcis.2017.06.003

    Article  CAS  Google Scholar 

  51. J.Y. Zhang, J.Y. Mei, S.S. Yi, X.X. Guan, Constructing of Z-scheme 3D g-C3N4-ZnO@graphene aerogel heterojunctions for high-efficient adsorption and photodegradation of organic pollutants. Appl. Surf. Sci. 492, 808–817 (2019). https://doi.org/10.1016/j.apsusc.2019.06.261

    Article  CAS  Google Scholar 

  52. J.F. Zhang, Y.F. Hu, X.L. Jiang, S.F. Chen, S.G. Meng, X.L. Fu, Design of a direct Z-scheme photocatalyst: preparation and characterization of Bi2O3/g-C3N4 with high visible light activity. J. Hazard. Mater. 280, 713–722 (2014). https://doi.org/10.1016/j.jhazmat.2014.08.055

    Article  CAS  Google Scholar 

  53. H.F. Chen, Y. Xia, H. Huang, Y.P. Gan, X.Y. Tao, C. Liang, J.M. Luo, R.Y. Fang, J. Zhang, W.K. Zhang, X.S. Liu, Highly dispersed surface active species of Mn/Ce/TiW catalysts for high performance at low temperature NH3-SCR. Chem. Eng. J. 330, 1195–1202 (2017). https://doi.org/10.1016/j.cej.2017.08.069

    Article  CAS  Google Scholar 

  54. W.Y. Zhao, Z.Q. Li, Y. Wang, R.R. Fan, C. Zhang, Y. Wang, X. Guo, R. Wang, S.L. Zhang, Ce and Zr modified WO3-TiO2 catalysts for selective catalytic reduction of NOx by NH3. Catalysts 8, 375 (2018). https://doi.org/10.3390/catal8090375

    Article  CAS  Google Scholar 

  55. S.J. Zhao, L. Wang, Y. Wang, X. Li, Hierarchically porous LaFeO3 perovskite prepared from the pomelo peel bio-template for catalytic oxidation of NO. J. Phys. Chem. Solids 116, 43–49 (2018). https://doi.org/10.1016/j.jpcs.2017.12.057

    Article  CAS  Google Scholar 

  56. Y. Geng, X.L. Chen, S.J. Yang, F.D. Liu, W.P. Shan, Promotional effects of Ti on a CeO2–MoO3 catalyst for the selective catalytic reduction of NOx with NH3. ACS Appl. Mater. Interfaces 9, 16951–16958 (2017). https://doi.org/10.1021/acsami.6b05380

    Article  CAS  Google Scholar 

  57. Z.B. Xiong, Z.Z. Li, Y.P. Du, C.X. Li, W. Lu, S. Le Tian, Starch bio-template synthesis of W-doped CeO2 catalyst for selective catalytic reduction of NOx with NH3: influence of ignition temperature. Environ. Sci. Pollut. Res. 28, 5914–5926 (2021). https://doi.org/10.1007/s11356-020-10888-9

    Article  CAS  Google Scholar 

  58. H.X. Jiang, H.Q. Wang, L. Kuang, G.M. Li, M.H. Zhang, Synthesis of MnOx–CeO2·NOx catalysts by polyvinylpyrrolidone-assisted supercritical antisolvent precipitation. J. Mater. Res. 29, 2188–2197 (2014). https://doi.org/10.1557/jmr.2014.161

    Article  CAS  Google Scholar 

  59. G.D. Zhang, W.L. Han, F. Dong, L.Y. Zong, G.X. Lu, Z.C. Tang, One pot synthesis of a highly efficient mesoporous ceria-titanium catalyst for selective catalytic reduction of NO. RSC Adv. 6, 76556–76567 (2016). https://doi.org/10.1039/c6ra17840e

    Article  CAS  Google Scholar 

  60. Z.B. Xiong, X.Q. Qu, Y.P. Du, C.X. Li, J. Liu, W. Lu, S.M. Wu, Selective catalytic reduction of NOx with NH3 over cerium–tungsten–titanium mixed oxide catalyst: synergistic promotional effect of H2O2 and Ce4+. J. Mater. Res. 35, 2218–2229 (2020). https://doi.org/10.1557/jmr.2020.203

    Article  CAS  Google Scholar 

  61. X.Y. Huang, A.J. Xie, J.Y. Wu, L.J. Xu, S.P. Luo, J.W. Xia, C. Yao, X.Z. Li, Cerium modified MnTiOx/attapulgite catalyst for low-temperature selective catalytic reduction of NOx with NH3. J. Mater. Res. 33, 3604–3613 (2018). https://doi.org/10.1557/jmr.2018.242

    Article  CAS  Google Scholar 

  62. D.H. Wang, L. Jia, X.L. Wu, L.Q. Lu, A.W. Xu, One-step hydrothermal synthesis of N-doped TiO2/C nanocomposites with high visible light photocatalytic activity. Nanoscale 4, 576–584 (2012). https://doi.org/10.1039/C1NR11353D

    Article  CAS  Google Scholar 

  63. M.Y. Xing, J.L. Zhang, F. Chen, New approaches to prepare nitrogen-doped TiO2 photocatalysts and study on their photocatalytic activities in visible light. Appl. Catal. B Environ. 89, 563–569 (2009). https://doi.org/10.1016/j.apcatb.2009.01.016

    Article  CAS  Google Scholar 

  64. S.F. Sun, M.X. Sun, Y.L. Fang, Y. Wang, H.P. Wang, One-step in situ calcination synthesis of g-C3N4/N-TiO2 hybrids with enhanced photoactivity. RSC Adv. 6, 13063–13071 (2016). https://doi.org/10.1039/C5RA26700E

    Article  CAS  Google Scholar 

  65. Z.A. Huang, Q. Sun, K.L. Lv, Z.H. Zhang, M. Li, B. Li, Effect of contact interface between TiO2 and g-C3N4 on the photoreactivity of g-C3N4/TiO2 photocatalyst: (0 0 1) vs (1 0 1) facets of TiO2. Appl. Catal. B Environ. 164, 420–427 (2015). https://doi.org/10.1016/j.apcatb.2014.09.043

    Article  CAS  Google Scholar 

  66. Z.Z. Zhang, Y.J. Zhang, L.H. Lu, Y.J. Si, S. Zhang, Y. Chen, K. Dai, P. Duan, L.M. Duan, J.H. Liu, Graphitic carbon nitride nanosheet for photocatalytic hydrogen production: the impact of morphology and element composition. Appl. Surf. Sci. 391, 369–375 (2017). https://doi.org/10.1016/j.apsusc.2016.05.174

    Article  CAS  Google Scholar 

  67. Q.Y. Li, Y.Q. Hou, N. Xiang, Y.J. Liu, Z.G. Huang, A new insight into the promotional effect of nitrogen-doping in activated carbon for selective catalytic reduction of NOx with NH3. Sci. Total Environ. 740, 140158 (2020). https://doi.org/10.1016/j.scitotenv.2020.140158

    Article  CAS  Google Scholar 

  68. Y. Wang, Y.W. Zhou, Y.S. Shen, S.M. Zhu, Pyridinic N: a special group for enhancing direct decomposition reaction of NO over N-doped porous carbon. Microporous Mesoporous Mater. 265, 98–103 (2018). https://doi.org/10.1016/j.micromeso.2018.02.006

    Article  CAS  Google Scholar 

  69. P. Li, Z.F. Li, J.X. Cui, C. Geng, Y. Kang, C. Zhang, C.L. Yang, N-doped graphene/CoFe2O4 catalysts for the selective catalytic reduction of NOx by NH3. RSC Adv. 9, 15791–15797 (2019). https://doi.org/10.1039/C9RA02456E

    Article  CAS  Google Scholar 

  70. K. Wang, Q. Li, B.S. Liu, B. Cheng, W.K. Ho, J.G. Yu, Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. Appl. Catal. B Environ. 176–177, 44–52 (2015). https://doi.org/10.1016/j.apcatb.2015.03.045

    Article  CAS  Google Scholar 

  71. X.Z. Li, W. Zhu, X.W. Lu, S.X. Zuo, C. Yao, C.Y. Ni, Integrated nanostructures of CeO2/attapulgite/g-C3N4 as efficient catalyst for photocatalytic desulfurization: mechanism, kinetics and influencing factors. Chem. Eng. J. 326, 87–98 (2017). https://doi.org/10.1016/j.cej.2017.05.131

    Article  CAS  Google Scholar 

  72. X.L. Li, Z. Wang, J. Sun, R. Oh, J.J. Feng, D.D. Shi, W. Zhao, S.S. Liu, Influence of CeO2 morphology on WO3/CeO2 catalyzed NO selective catalytic reduction by NH3. J. Energy Inst. 93, 1511–1518 (2020). https://doi.org/10.1016/j.joei.2020.01.013

    Article  CAS  Google Scholar 

  73. L. Chen, D. Weng, J.D. Wang, D. Weng, L. Cao, Low-temperature activity and mechanism of WO3-modified CeO2-TiO2 catalyst under NH3-NO/NO2 SCR conditions. Chin. J. Catal. 39, 1804–1813 (2018). https://doi.org/10.1016/S1872-2067(18)63129-8

    Article  CAS  Google Scholar 

  74. Y. Jiang, Z.M. Xing, X.C. Wang, S.B. Huang, X.W. Wang, Q.Y. Liu, Activity and characterization of a Ce–W–Ti oxide catalyst prepared by a single step sol–gel method for selective catalytic reduction of NO with NH3. Fuel 151, 124–129 (2015). https://doi.org/10.1016/j.fuel.2015.01.061

    Article  CAS  Google Scholar 

  75. Q.L. Wang, J.J. Zhou, J.C. Zhang, H. Zhu, Y.H. Feng, J. Jin, Effect of ceria doping on the catalytic activity and SO2 resistance of MnOx/TiO2 catalysts for the selective catalytic reduction of NO with NH3 at at low temperatures. Aerosol Air Qual. Res. 20, 477–488 (2020). https://doi.org/10.4209/aaqr.2019.10.0546

    Article  CAS  Google Scholar 

  76. Y.K. Shi, X.J. Hu, J.T. Zhao, X.J. Zhou, B.L. Zhu, S.M. Zhang, W.P. Huang, CO oxidation over Cu2O deposited on 2D continuous lamellar g-C3N4. New J. Chem. 39, 6642–6648 (2015). https://doi.org/10.1039/C5NJ00621J

    Article  CAS  Google Scholar 

  77. H.H. Xiao, W.Y. Wang, G.G. Liu, Z.M. Chen, K.L. Lv, J.J. Zhu, Photocatalytic performances of g-C3N4 based catalysts for RhB degradation: effect of preparation conditions. Appl. Surf. Sci. 358, 313–318 (2015). https://doi.org/10.1016/j.apsusc.2015.07.213

    Article  CAS  Google Scholar 

  78. L. Ma, C.Y. Seo, M. Nahata, X.Y. Chen, J.H. Li, J.W. Schwank, Shape dependence and sulfate promotion of CeO2 for selective catalytic reduction of NOx with NH3. Appl. Catal. B Environ. 232, 246–259 (2018). https://doi.org/10.1016/j.apcatb.2018.03.065

    Article  CAS  Google Scholar 

  79. L.N. Kong, X.T. Zhang, C.H. Wang, J.P. Xu, X.W. Du, L. Li, Ti3+ defect mediated g-C3N4/TiO2 Z-scheme system for enhanced photocatalytic redox performance. Appl. Surf. Sci. 448, 288–296 (2018). https://doi.org/10.1016/j.apsusc.2018.04.011

    Article  CAS  Google Scholar 

  80. M.R. Li, C.F. Chen, L.P. Xu, Y.S. Jia, Y. Liu, X. Liu, Surface defect-rich ceria quantum dots anchored on sulfur-doped carbon nitride nanotubes with enhanced charge separation for solar hydrogen production. J. Energy Chem. 52, 51–59 (2021). https://doi.org/10.1016/j.jechem.2020.04.003

    Article  CAS  Google Scholar 

  81. Z.W. Tong, D. Yang, T.X. Xiao, Y. Tian, Z.Y. Jiang, Biomimetic fabrication of g-C3N4/TiO2 nanosheets with enhanced photocatalytic activity toward organic pollutant degradation. Chem. Eng. J. 260, 117–125 (2015). https://doi.org/10.1016/j.cej.2014.08.072

    Article  CAS  Google Scholar 

  82. R.K. Singh, T. Patil, A.N. Sawarkar, Pyrolysis of garlic husk biomass: physico-chemical characterization, thermodynamic and kinetic analyses. Bioresour. Technol. Rep. 12, 100558 (2020). https://doi.org/10.1016/j.biteb.2020.100558

    Article  Google Scholar 

  83. Y.C. Kuang, B.S. He, C.J. Wang, W.X. Tong, D. He, Thermogravimetric analysis of pulverized coal in low oxygen atmosphere. Thermochim. Acta. 703, 178992 (2021). https://doi.org/10.1016/j.tca.2021.178992

    Article  CAS  Google Scholar 

  84. A.K. Varma, N. Lal, A.K. Rathore, R. Katiyar, L.S. Thakur, R. Shankar, P. Mondal, Thermal, kinetic and thermodynamic study for co-pyrolysis of pine needles and styrofoam using thermogravimetric analysis. Energy 218, 119404 (2021). https://doi.org/10.1016/j.energy.2020.119404

    Article  CAS  Google Scholar 

  85. X.S. Huang, G.D. Zhang, F. Dong, Z.C. Tang, An environmentally friendly wide temperature CeWTiOx catalyst with superior performance for the selective catalytic reduction NOx with NH3. J. Ind. Eng. Chem. 69, 66–76 (2019). https://doi.org/10.1016/j.jiec.2018.09.006

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China (No. 51406118).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-bo Xiong or Huan-cong Shi.

Ethics declarations

Competing interest

The authors declare that they have no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8317 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Zb., Guo, Fc., Zhang, Jx. et al. Influence of g-C3N4 doping on the NH3-SCR activity of Cerium–tungsten–titanium mixed oxide catalyst. Journal of Materials Research 37, 835–848 (2022). https://doi.org/10.1557/s43578-022-00489-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00489-2

Keywords

Navigation