Skip to main content
Log in

Preparation and characterization of magnetic chitosan hydroxyapatite nanoparticles for protein drug delivery and antibacterial activity

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A novel magnetic chitosan hydroxyapatite (MCHAp) nanoparticle as a protein drug carrier was synthesized through an improved hydrothermal method. The chemical composition, microstructure, magnetic properties, and porous characteristics were investigated by X-ray diffraction, scanning electron microscopy and vibrating sample magnetometer. The characterization results indicated that Fe3O4 magnetic nanoparticles and chitosan were successfully incorporated into hydroxyapatite, which endowed the as-prepared MCHAp nanoparticle with a porous structure and excellent magnetic property. The protein drug adsorption and release behavior of the MCHAp nanoparticles were investigated with lysozyme (LYS) as a model protein drug. The MCHAp nanoparticles showed high LYS adsorption capacity (649.75 mg/g) and sustained drug release properties. In addition, magnetic chitosan hydroxyapatite nanoparticles also exhibited good bacterial inhibition performance. The MCHAp nanoparticle was expected to be a promising drug carrier for the biomedical field though more detailed protein kinetics and preclinical studies were necessary to verify these observations.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. M.U. Munir, A. Ihsan, Y. Sarwar, S.Z. Bajwa, K. Bano, B. Tehseen, N. Zeb, I. Hussain, M.T. Ansari, M. Saeed, J. Li, M.Z. Iqbal, A. Wu, W.S. Khan, Hollow mesoporous hydroxyapatite nanostructures; smart nanocarriers with high drug loading and controlled releasing features. Int. J. Pharm. 544(1), 112 (2018)

    Article  CAS  Google Scholar 

  2. Y. Xu, L. An, L. Chen, H. Xu, D. Zeng, G. Wang, Controlled hydrothermal synthesis of strontium-substituted hydroxyapatite nanorods and their application as a drug carrier for proteins. Adv. Powder Technol. 29(4), 1042 (2018)

    Article  CAS  Google Scholar 

  3. F. Sharifianjazi, A. Esmaeilkhanian, M. Moradi, A. Pakseresht, M.S. Asl, H. Karimi-Maleh, H.W. Jang, M. Shokouhimehr, R.S. Varma, Biocompatibility and mechanical properties of pigeon bone waste extracted natural nano-hydroxyapatite for bone tissue engineering. Mater. Sci. Eng. B 264, 114950 (2021)

    Article  CAS  Google Scholar 

  4. M.M. Imani, M. Kiani, F. Rezaei, R. Souri, M. Safaei, Optimized synthesis of novel hydroxyapatite/CuO/TiO2 nanocomposite with high antibacterial activity against oral pathogen Streptococcus mutans. Ceram. Int. (2021)

  5. M. Farokhi, F. Mottaghitalab, S. Samani, M.A. Shokrgozar, S.C. Kundu, R.L. Reis, Y. Fatahi, D.L. Kaplan, Silk fibroin/hydroxyapatite composites for bone tissue engineering. Biotechnol. Adv. 36(1), 68 (2018)

    Article  CAS  Google Scholar 

  6. S. Chen, Y. Han, J. Huang, L. Dai, J. Du, D.J. McClements, L. Mao, J. Liu, Y. Gao, Fabrication and characterization of layer-by-layer composite nanoparticles based on zein and hyaluronic acid for codelivery of curcumin and quercetagetin. ACS Appl. Mater. Interfaces. 11(18), 16922 (2019)

    Article  CAS  Google Scholar 

  7. L. Guo, Z. Du, Y. Wang, Q. Cai, X. Yang, Degradation behaviors of three-dimensional hydroxyapatite fibrous scaffolds stabilized by different biodegradable polymers. Ceram. Int. 46(9), 14124 (2020)

    Article  CAS  Google Scholar 

  8. Z. Yu, G. Rao, Y. Wei, J. Yu, S. Wu, Y. Fang, Preparation, characterization, and antibacterial properties of biofilms comprising chitosan and epsilon-polylysine. Int. J. Biol. Macromol. 141, 545 (2019)

    Article  CAS  Google Scholar 

  9. L. Xia, S. Wang, Z. Jiang, J. Chi, S. Yu, H. Li, Y. Zhang, L. Li, C. Zhou, W. Liu, B. Han, Hemostatic performance of chitosan-based hydrogel and its study on biodistribution and biodegradability in rats. Carbohydr. Polym. 264, 117965 (2021)

    Article  CAS  Google Scholar 

  10. A.A. Yaroslavov, A.A. Efimova, E.A. Krasnikov, K.S. Trosheva, A.S. Popov, N.S. Melik-Nubarov, G.G. Krivtsov, Chitosan-based multi-liposomal complexes: synthesis, biodegradability and cytotoxicity. Int. J. Biol. Macromol. 177, 455 (2021)

    Article  CAS  Google Scholar 

  11. S. Tamburaci, F. Tihminlioglu, Development of Si doped nano hydroxyapatite reinforced bilayer chitosan nanocomposite barrier membranes for guided bone regeneration. Mater. Sci. Eng. C 128, 112298 (2021)

    Article  CAS  Google Scholar 

  12. S.A.I. Jariya, V.P. Padmanabhan, R. Kulandaivelu, N. Prakash, F. Mohammad, H.A. Al-Lohedan, S. Paiman, R. Schirhagl, M.A.M. Hossain, S. Sagadevan, Drug delivery and antimicrobial studies of chitosan-alginate based hydroxyapatite bioscaffolds formed by the Casein micelle assisted synthesis. Mater. Chem. Phys. 272, 125019 (2021)

    Article  CAS  Google Scholar 

  13. A. Zaharia, V. Muşat, E.M. Anghel, I. Atkinson, O.-C. Mocioiu, M. Buşilă, V.G. Pleşcan, Biomimetic chitosan-hydroxyapatite hybrid biocoatings for enamel remineralization. Ceram. Int. 43(14), 11390 (2017)

    Article  CAS  Google Scholar 

  14. X. Li, K. Nan, S. Shi, H. Chen, Preparation and characterization of nano-hydroxyapatite/chitosan cross-linking composite membrane intended for tissue engineering. Int. J. Biol. Macromol. 50(1), 43 (2012)

    Article  CAS  Google Scholar 

  15. V. Saxena, A. Hasan, L.M. Pandey, Antibacterial nano-biocomposite scaffolds of Chitosan, Carboxymethyl Cellulose and Zn & Fe integrated Hydroxyapatite (Chitosan-CMC-FZO@HAp) for bone tissue engineering. Cellulose 28(14), 9207 (2021)

    Article  Google Scholar 

  16. D. Tsiourvas, A. Sapalidis, T. Papadopoulos, Hydroxyapatite/chitosan-based porous three-dimensional scaffolds with complex geometries. Mater. Today Commun. 7, 59 (2016)

    Article  CAS  Google Scholar 

  17. A.H. Yao, X.D. Li, L. Xiong, J.H. Zeng, J. Xu, D.P. Wang, Hollow hydroxyapatite microspheres/chitosan composite as a sustained delivery vehicle for rhBMP-2 in the treatment of bone defects. J. Mater. Sci. Mater. Med. 26(1), 5336 (2015)

    Article  Google Scholar 

  18. O.C. Wilson, J.R. Hull, Surface modification of nanophase hydroxyapatite with chitosan. Mater. Sci. Eng. C 28(3), 434 (2008)

    Article  CAS  Google Scholar 

  19. J. Li, Y. He, W. Sun, Y. Luo, H. Cai, Y. Pan, M. Shen, J. Xia, X. Shi, Hyaluronic acid-modified hydrothermally synthesized iron oxide nanoparticles for targeted tumor MR imaging. Biomaterials 35(11), 3666 (2014)

    Article  CAS  Google Scholar 

  20. J.K. Patra, M.S. Ali, I.G. Oh, K.H. Baek, Proteasome inhibitory, antioxidant, and synergistic antibacterial and anticandidal activity of green biosynthesized magnetic Fe3O4 nanoparticles using the aqueous extract of corn (Zea mays L.) ear leaves. Artif. Cells Nanomed. Biotechnol. 45(2), 349 (2017)

    Article  CAS  Google Scholar 

  21. S. Chen, F. Han, D. Huang, J. Meng, J. Chu, M. Wang, P. Wang, Fe3O4 magnetic nanoparticle-enhanced radiotherapy for lung adenocarcinoma via delivery of siBIRC5 and AS-ODN. J. Transl. Med. 19(1), 337 (2021)

    Article  CAS  Google Scholar 

  22. A.E. Albalawi, A.K. Khalaf, M.S. Alyousif, A.D. Alanazi, P. Baharvand, M. Shakibaie, H. Mahmoudvand, Fe3O4@piroctone olamine magnetic nanoparticles: synthesize and therapeutic potential in cutaneous leishmaniasis. Biomed. Pharmacother. 139, 111566 (2021)

    Article  CAS  Google Scholar 

  23. X. Li, D. Zeng, P. Ke, G. Wang, D. Zhang, Synthesis and characterization of magnetic chitosan microspheres for drug delivery. RSC Adv. 10(12), 7163 (2020)

    Article  CAS  Google Scholar 

  24. J. Liang, X. Yang, D. Liu, M. Cong, Y. Song, S. Bai, Lipid/hyaluronic acid-coated doxorubicin-Fe3O4 as a dual-targeting nanoparticle for enhanced cancer therapy. AAPS PharmSciTech 21(6), 235 (2020)

    Article  CAS  Google Scholar 

  25. S. Singh, G. Singh, N. Bala, Synthesis and characterization of iron oxide-hydroxyapatite-chitosan composite coating and its biological assessment for biomedical applications. Prog. Org. Coat. 150, 106011 (2021)

    Article  CAS  Google Scholar 

  26. S. Singh, G. Singh, N. Bala, Electrophoretic deposition of Fe3O4 nanoparticles incorporated hydroxyapatite-bioglass-chitosan nanocomposite coating on AZ91 Mg alloy. Mater. Today Commun. 26, 101870 (2021)

    Article  CAS  Google Scholar 

  27. Y.D. Yu, Y.J. Zhu, C. Qi, Y.Y. Jiang, H. Li, J. Wu, Hydroxyapatite nanorod-assembled porous hollow polyhedra as drug/protein carriers. J. Colloid Interface Sci. 496, 416 (2017)

    Article  CAS  Google Scholar 

  28. Z. Song, Y. Hu, L. Qi, T. Xu, Y. Yang, Z. Xu, X. Lai, X. Wang, D. Zhang, S. Li, An effective and recyclable deproteinization method for polysaccharide from oyster by magnetic chitosan microspheres. Carbohydr. Polym. 195, 558 (2018)

    Article  CAS  Google Scholar 

  29. K. Lin, P. Liu, L. Wei, Z. Zou, W. Zhang, Y. Qian, Y. Shen, J. Chang, Strontium substituted hydroxyapatite porous microspheres: surfactant-free hydrothermal synthesis, enhanced biological response and sustained drug release. Chem. Eng. J. 222, 49 (2013)

    Article  CAS  Google Scholar 

  30. Z. Li, M. Cao, W. Zhang, L. Liu, J. Wang, W. Ge, Y. Yuan, T. Yue, R. Li, W.W. Yu, Affinity adsorption of lysozyme with Reactive Red 120 modified magnetic chitosan microspheres. Food Chem. 145, 749 (2014)

    Article  CAS  Google Scholar 

  31. F. Errassifi, S. Sarda, A. Barroug, A. Legrouri, H. Sfihi, C. Rey, Infrared, Raman and NMR investigations of risedronate adsorption on nanocrystalline apatites. J. Colloid Interface Sci. 420, 101 (2014)

    Article  CAS  Google Scholar 

  32. Y. Qi, J. Shen, Q. Jiang, B. Jin, J. Chen, X. Zhang, The morphology control of hydroxyapatite microsphere at high pH values by hydrothermal method. Adv. Powder Technol. 26(4), 1041 (2015)

    Article  CAS  Google Scholar 

  33. K. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 57, 603 (1985)

    Article  CAS  Google Scholar 

  34. S. Fan, Z. Huang, Y. Zhang, H. Hu, X. Liang, S. Gong, J. Zhou, R. Tu, Magnetic chitosan-hydroxyapatite composite microspheres: Preparation, characterization, and application for the adsorption of phenolic substances. Bioresour. Technol. 274, 48 (2019)

    Article  CAS  Google Scholar 

  35. I. Yamaguchi, K. Tokuchi, H. Fukuzaki, Y. Koyama, K. Takakuda, H. Monma, J. Tanaka, Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites. J. Biomed. Mater. Res. 55(1), 20 (2001)

    Article  CAS  Google Scholar 

  36. F. Absalan, M.S. Sadjadi, N. Farhadyar, M.H. Sadr, Synthesis of mesoporous hydroxyapatite with controlled pore size using the chitosan as an organic modifier: investigating the effect of the weight ratio and pH value of chitosan on the structural and morphological properties. J. Inorg. Organomet. Polym. Mater. 30(9), 3562 (2020)

    Article  CAS  Google Scholar 

  37. T. Nagasaki, F. Nagata, M. Sakurai, K. Kato, Effects of pore distribution of hydroxyapatite particles on their protein adsorption behavior. J. Asian Ceram. Soc. 5(2), 88 (2017)

    Article  Google Scholar 

  38. H.F.M. Freundlich, Über die adsorption in lösungen. Z. Phys. Chem. 57, 385 (1906)

    CAS  Google Scholar 

  39. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361 (1917)

    Article  Google Scholar 

  40. M.S. Bhattacharyya, P. Hiwale, M. Piras, L. Medda, D. Steri, M. Piludu, A. Salis, M. Monduzzi, Lysozyme adsorption and release from ordered mesoporous materials. J. Phys. Chem. C 114(47), 19928 (2010)

    Article  CAS  Google Scholar 

  41. A.S. Prata, C.R.F. Grosso, Production of microparticles with gelatin and chitosan. Carbohydr. Polym. 116, 292 (2015)

    Article  CAS  Google Scholar 

  42. Z.G. Peng, K. Hidajat, M.S. Uddin, Adsorption of bovine serum albumin on nanosized magnetic particles. J. Colloid Interface Sci. 271(2), 277 (2004)

    Article  CAS  Google Scholar 

  43. C. Cai, U. Bakowsky, E. Rytting, A.K. Schaper, T. Kissel, Charged nanoparticles as protein delivery systems: a feasibility study using lysozyme as model protein. Eur. J. Pharm. Biopharm. 69(1), 31 (2008)

    Article  CAS  Google Scholar 

  44. Y. Xu, L. An, L. Chen, L. Cao, D. Zeng, G. Wang, A Facile chemical route to synthesize Zn doped hydroxyapatite nanorods for protein drug delivery. Mater. Chem. Phys. 214, 359 (2018)

    Article  CAS  Google Scholar 

  45. C. Zhang, C. Li, S. Huang, Z. Hou, Z. Cheng, P. Yang, C. Peng, J. Lin, Self-activated luminescent and mesoporous strontium hydroxyapatite nanorods for drug delivery. Biomaterials 31(12), 3374 (2010)

    Article  CAS  Google Scholar 

  46. L. Duan, Y. Wang, Y. Zhang, J. Liu, Graphene immobilized enzyme/polyethersulfone mixed matrix membrane: enhanced antibacterial, permeable and mechanical properties. Appl. Surf. Sci. 355, 436 (2015)

    Article  CAS  Google Scholar 

  47. B. Xiao, Y. Wan, M. Zhao, Y. Liu, S. Zhang, Preparation and characterization of antimicrobial chitosan-N-arginine with different degrees of substitution. Carbohydr. Polym. 83(1), 144 (2011)

    Article  CAS  Google Scholar 

  48. L. He, Z. Li, J. Fu, Y. Deng, N. He, Z. Wang, H. Wang, Z. Shi, Z. Wang, Preparation of SiO2/(PMMA/Fe3O4) from monolayer linolenic acid modified Fe3O4 nanoparticles via miniemulsion polymerization. J. Biomed. Nanotechnol. 5(5), 596 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21473126) and the National Key R&D Program of China (2017YFB0304300 & 2017YFB0304303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danlin Zeng.

Ethics declarations

Conflict of interest

There are no conflict of interest to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1263 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zeng, D., Chen, L. et al. Preparation and characterization of magnetic chitosan hydroxyapatite nanoparticles for protein drug delivery and antibacterial activity. Journal of Materials Research 36, 4307–4316 (2021). https://doi.org/10.1557/s43578-021-00424-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00424-x

Keywords

Navigation