Skip to main content
Log in

Toughening mechanisms of Ti3SiC2- and TiB2- toughened SiC matrix prepared via reactive melt infiltration

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The SiC–Ti3SiC2–TiB2 composites herein were prepared in situ by reactive melt infiltration (RMI). The synergy mechanism between Ti3SiC2 and TiB2 on fracture toughness of SiC matrix was investigated. The phase composition and microstructure of SiC–Ti3SiC2–TiB2 composites were studied, and their mechanical properties, such as Vickers hardness, elastic modulus and indent fracture toughness, were compared to those of SiC ceramics and SiC–Ti3SiC2 composites. The crack propagation of SiC–Ti3SiC2–TiB2 composites was simulated via Extended Finite Element Method (XFEM), and the fracture behavior in laminated Ti3SiC2 grains was also evaluated. The results show that SiC–Ti3SiC2–TiB2 composites exhibit an indentation fracture toughness of 9.57 MPa m1/2, which is greatly higher than that of SiC ceramics and SiC–Ti3SiC2 composites. It was suggested that the main toughening mechanisms of lamellar Ti3SiC2 grains and columnar TiB2 grains are crack deflection, crack bridging, grain fracture, delamination and grain pull-out.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. J. Jiao, M.W. Chen, New generation of high-temperature material for engine-preparation, property and application of ceramic matrix composites. Aero. Manuf. Technol. 451(7), 62–69 (2014)

    Google Scholar 

  2. K. Rivera, J. Rhoat, T. Muth, O.J. Gregory, M. Ricci, Novel temperature sensors for SiC-SiC CMC engine components. J. Mater. Res. 32(17), 1–7 (2021)

    Google Scholar 

  3. M. Singh, D.R. Behrendt, Reactive melt infiltration of silicon-niobium alloys in microporous carbons. J. Mater. Res. 9(7), 1701–1708 (1994)

    Article  CAS  Google Scholar 

  4. T. El-Raghy, M.W. Barsoum, Processing and mechanical properties of Ti3SiC2: part I, reaction path and microstructure evolution. J. Am. Ceram. Soc. 82, 2849–2854 (1999)

    Article  CAS  Google Scholar 

  5. M.W. Barsoum, T. El-Raghy, The MAX phases: unique new carbide and nitride materials. J. Am. Sci. 89, 334–343 (2001)

    Google Scholar 

  6. H.B. Zhang, Y.C. Zhou, Y.W. Bao, M.S. Li, Abnormal thermal shock behavior of Ti3SiC2 and Ti3AlC2. J. Mater. Res. 21, 2401–2407 (2006)

    Article  CAS  Google Scholar 

  7. X.W. Yin, S.S. He, L.T. Zhang, S.W. Fan, L.F. Cheng, G.L. Tian, T. Li, Fabrication and characterization of a carbon fibre reinforced carbon-silicon carbide-titanium silicon carbide hybrid matrix composite. Mater. Sci. Eng. A 527, 835–841 (2010)

    Article  Google Scholar 

  8. O. Yaghobizadeh, A. Sedghi, H.R. Baharvandi, Introduction of nano-laminate Ti3SiC2 and SiC phases into Cf-C composite by liquid silicon infiltration method. Metall. Mater. Eng. 23(1), 21–30 (2017)

    Article  Google Scholar 

  9. R. Radhakrishnan, C.H. Henager, J.L. Brimhall, S.B. Bhaduri, Synthesis of Ti3SiC2/SiC and TiSi2/SiC composites using displacement reactions in the Ti-Si-C system. Scr. Mater. 34(12), 1809–1814 (1996)

    Article  CAS  Google Scholar 

  10. S.B. Li, J.X. Xie, L.T. Zhang, L.F. Cheng, In situ synthesis of Ti3SiC2/SiC composite by displacement reaction of Si and TiC. Mater. Sci. Eng. A 381(1/2), 51–56 (2004)

    Article  Google Scholar 

  11. G.L. Zhao, C.Z. Huang, H.L. Liu, B. Zhou, H.T. Zhu, J. Wang, A study on in-situ synthesis of TiB2-SiC ceramic composites by reactive hot pressing. Ceram. Int. 40, 2305–2313 (2014)

    Article  CAS  Google Scholar 

  12. C. Zhu, L. Feng, B. Xu, Q. Lin, G. He, Preparation of ultra-high temperature SiC-TiB2 nanocomposites from a single-source polymer precursor. Ceram. Int. 46(12), 19928–19934 (2020)

    Article  CAS  Google Scholar 

  13. G.B. Chen, Z. Wang, Z.J. Wu, Investigation and characterization of densification, processing and mechanical properties of TiB2-SiC ceramics. Mater. Des. 64, 9–14 (2014)

    Article  CAS  Google Scholar 

  14. X. Cao, M. Ma, X. Ma, C. Wang, J. Wu, Microstructures and mechanical properties of in-situ SiC-TiB2 ceramic composites fabricated by reactive melt infiltration. J. Alloys Compd. 840, 155734 (2020)

    Article  CAS  Google Scholar 

  15. D. Bucevac, V. Krstic, Microstructure-mechanical properties relations in SiC-TiB2 composite. Mater. Chem. Phys. 133, 197–204 (2012)

    Article  CAS  Google Scholar 

  16. K. Song, J. Yang, T. Qiu, L.M. Pan, In situ synthesis of (TiB2+SiC)/Ti3SiC2 composites by hot pressing. Mater. Lett. 75, 16–19 (2012)

    Article  CAS  Google Scholar 

  17. W.J. Zou, F.Z. Li, H.B. Zhang, J. Yang, S.M. Peng, T. Qiu, Microstructure and mechanical properties of in-situ hot pressed (TiB2+SiC)/Ti3SiC2 composites with tunable TiB2 content. Adv. Appl. Ceram. 115(5), 1743–6761 (2016)

    Article  Google Scholar 

  18. M.W. Barsoum, M. Radovic, Elastic and mechanical properties of the MAX phases. Annu. Rev. Mater. Res. 41, 195–227 (2011)

    Article  CAS  Google Scholar 

  19. X.M. Fan, X.W. Yin, Microstructure and properties of carbon fiber reinforced SiC matrix composites containing Ti3SiC2. Adv. Eng. Mater. 16(6), 670–683 (2014)

    Article  CAS  Google Scholar 

  20. N. Moёs, J. Dolbow, T. Belytschko, A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46, 131–150 (1999)

    Article  Google Scholar 

  21. A. Entezari, S.I. Roohani-Esfahani, Z. Zhang, Fracture behaviors of ceramic tissue scaffolds for load bearing applications. Sci. Rep. 6, 28816 (2016)

    Article  CAS  Google Scholar 

  22. Z.H. Teng, F. Sun, S.C. Wu, Z.B. Zhang, T. Chen, D.M. Liao, An adaptively refined XFEM with virtual node polygonal elements for dynamic crack problems. Comput. Mech. 62, 1087–1106 (2018)

    Article  Google Scholar 

  23. V. Sonkar, S. Bhattacharya, K. Sharma, XFEM simulation of an edge cracked 3D functionally graded cuboid. AIP Conference Proceedings 2220(1) (2020)

  24. Z.H. Teng, D.M. Liao, S.C. Wu, F. Sun, T. Chen, Z.B. Zhang, An adaptively refined XFEM for the dynamic fracture problems with micro-defects. Theor. Appl. Frac. Mech. 103, 102255 (2019)

    Article  Google Scholar 

  25. R.U. Patil, B.K. Mishra, I.V. Singh, A multiscale framework based on phase field method and XFEM to simulate fracture in highly heterogeneous materials. Theor. Appl. Fract. Mech. 100, 390–415 (2019)

    Article  Google Scholar 

  26. H. Miyazaki, H. Hyuga, Y.I. Yoshizawa, K. Hirao, T. Ohji, Relationship between fracture toughness determined by surface crack in flexure and fracture resistance measured by indentation fracture for silicon nitride ceramics with various microstructures. Ceram. Int. 35(1), 493–501 (2009)

    Article  CAS  Google Scholar 

  27. E.D. Wu, E.H. Kisi, D.P. Riley, R.I. Smith, Intermediate phases in Ti3SiC2 synthesis from Ti/SiC/C mixtures studied by time-resolved neutron diffraction. J. Am. Ceram. Soc. 85(12), 3084–3086 (2002)

    Article  CAS  Google Scholar 

  28. Y.I. Jung, D.J. Park, J.H. Park, J.Y. Park, H.G. Kim, Y.H. Koo, Effect of TiSi2/Ti3SiC2, matrix phases in a reaction-bonded SiC on mechanical and high-temperature oxidation properties. J. Eur. Ceram. Soc. 36(6), 1343–1348 (2016)

    Article  CAS  Google Scholar 

  29. H. Dong, S. Li, Y. Teng, W. Ma, Joining of SiC ceramic-based materials with ternary carbide Ti3SiC2. Mater. Sci. Eng. B 176(1), 60–64 (2011)

    Article  CAS  Google Scholar 

  30. S.P. Yin, Z.H. Zhang, X.W. Cheng, T.J. Su, Z.Y. Hu, Q. Song, H. Wang, Spark plasma sintering of B4C-TiB2-SiC composite ceramics using B4C, Ti3SiC2 and Si as sintering materials. Ceram. Int. 44, 21626–21632 (2018)

    Article  CAS  Google Scholar 

  31. Z.X. Zhang, C.J. Xu, X.W. Du, Z.L. Li, J.L. Wang, W.H. Xing, Y. Sheng, W.M. Wang, Z.Y. Fu, Synthesis mechanism and mechanical properties of TiB2-SiC composites fabricated with the B4C–TiC–Si system by reactive hot pressing. J. Alloys Comp. 619, 26–30 (2015)

    Article  CAS  Google Scholar 

  32. G. Gorny, M. Raczka, L. Stobierski, Ceramic composite Ti3SiC2-TiB2 microstructure and mechanical properties. Mater. Char. 60, 1168–1174 (2009)

    Article  CAS  Google Scholar 

  33. B.Y. Islak, D. Candar, Synthesis and properties of TiB2/Ti3SiC2 composites. Ceram. Int. 46(1), 1439–1446 (2020)

    Article  Google Scholar 

  34. B.J. Kooi, R.J. Poppen, N.J.M. Carvalho, JTh.M. De Hosson, M.W. Barsoum, Ti3SiC2: a damage tolerant ceramic studied with nanoindentations and transmission electron microscopy. Acta. Mater. 51, 2859–2872 (2003)

    Article  CAS  Google Scholar 

  35. Y.R. Zhou, J. Jian, J.H. Yang, X.X. Lv, Z.Y. Jiang, R. Yang, H. Liu, Y. Gao, Growth of lamellar Ti3SiC2 in SiC matrix by the reaction of Si melt with C-TiC preform. Mater. Chem. Phys. 267, 124665 (2021)

    Article  CAS  Google Scholar 

  36. J. Lankford, D.L. Davidson, Indentation plasticity and microfracture in silicon carbide. J. Mater. Sci. 14(7), 1669–1675 (1979)

    Article  CAS  Google Scholar 

  37. X. Chen, G. Bei, Toughening mechanisms in nanolayered MAX phase ceramics-A review. Materials 10(4), 366 (2017)

    Article  Google Scholar 

  38. N.A. Abdullah, J.L. Curiel-Sosa, Z.A. Taylor, B. Tafazzolimoghaddam, J.L. Martinez Vicente, C. Zhang, Transversal crack and delamination of laminates using XFEM. Compos. Struct. 173, 78–85 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Jiao.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y.R., Jiao, J., Jiang, Z.Y. et al. Toughening mechanisms of Ti3SiC2- and TiB2- toughened SiC matrix prepared via reactive melt infiltration. Journal of Materials Research 36, 4963–4973 (2021). https://doi.org/10.1557/s43578-021-00402-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00402-3

Keywords

Navigation