Skip to main content
Log in

Indenter wear study and proposal of a simple method for evaluation of indenter blunting

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Knowledge of indenter shape and its blunting is crucial for exact evaluation of the indentation data and mechanical properties derived from them. In this study, the evolution of the Berkovich indenter tip with increasing number of indentations into fused silica and sapphire was described using a spheroconical model. It was found that the indenter tip radius increases by ~ 7% after several thousands of indentations into sapphire. In the second part of the paper, the shape of a large number of indenters in various states of use was evaluated using the same spheroconical model. The relation between the indenter tip radius, maximum indentation depth and elastic to total work of indentation ratio at 1 mN on fused silica was investigated. The correlation of indenter radius and maximum indentation depth at 1 mN is very convincing and it can be used as a fast and simple estimation of the indenter bluntness.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

The data generated during the preparation of the manuscript are available from the authors upon reasonable request.

Code availability

Not applicable.

References

  1. M.R. VanLandingham, Review of instrumented indentation. J. Res. Natl. Inst. Stand. Technol. 108, 249 (2003). https://doi.org/10.6028/jres.108.024

    Article  Google Scholar 

  2. W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J. Mater. Res. 19, 3–20 (2004)

    Article  CAS  Google Scholar 

  3. N.M. Jennett, An Introduction To Instrumented Indentation Testing, National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW, 2007. https://eprintspublications.npl.co.uk/5028/1/mgpg92.pdf. Accessed 26 Nov 2020

  4. J. Field, M. Swain, Determining the mechanical properties of small volumes of material from submicrometer spherical indentations. J. Mater. Res. 10, 101–112 (1995)

    Article  CAS  Google Scholar 

  5. G. Abadias, J.J. Colin, D. Tingaud, Ph. Djemia, L. Belliard, C. Tromas, Elastic properties of α- and β-tantalum thin films. Thin Solid Films 688, 137403 (2019). https://doi.org/10.1016/j.tsf.2019.06.053

    Article  CAS  Google Scholar 

  6. M.R. Abernathy, J. Hough, I.W. Martin, S. Rowan, M. Oyen, C. Linn, J.E. Faller, Investigation of the Young’s modulus and thermal expansion of amorphous titania-doped tantala films. Appl. Opt. 53, 3196 (2014). https://doi.org/10.1364/AO.53.003196

    Article  Google Scholar 

  7. O. Kvítek, P. Haušild, J. Nohava, J. Siegl, V. Švorčík, Adhesion of thin Au layers on glass treated with Ar plasma and biphenyl-4,4′-dithiol. Surf. Coat. Technol. 331, 35–39 (2017). https://doi.org/10.1016/j.surfcoat.2017.10.024

    Article  CAS  Google Scholar 

  8. C. Agustín-Sáenz, M. Machado, J. Nohava, N. Yurrita, A. Sanz, M. Brizuela, O. Zubillaga, A. Tercjak, Mechanical properties and field performance of hydrophobic antireflective sol-gel coatings on the cover glass of photovoltaic modules. Sol. Energy Mater. Sol. Cells. 216, 110694 (2020). https://doi.org/10.1016/j.solmat.2020.110694

    Article  CAS  Google Scholar 

  9. L. Broussous, G. Berthout, D. Rébiscoul, V. Rouessac, A. Ayral, Mechanical properties of a plasma-modified porous low-k material. Microelectron. Eng. 87, 466–469 (2010). https://doi.org/10.1016/j.mee.2009.05.018

    Article  CAS  Google Scholar 

  10. ISO, ISO 14577-1:2015 Metallic materials—instrumented indentation test for hardness and materials parameters—Part 1: test method, ISO (2015), https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/66/56626.html. Accessed 1 Dec 2020

  11. S. Sagadevan, P. Murugasen, Novel analysis on the influence of tip radius and shape of the nanoindenter on the hardness of materials. Procedia Mater. Sci. 6, 1871–1878 (2014). https://doi.org/10.1016/j.mspro.2014.07.218

    Article  CAS  Google Scholar 

  12. J.-S. Park, Y.-H. Lee, Y. Kim, J.-H. Hahn, Prediction of bluntness for pyramidal indenters from nanoindentation curves. Surf. Coat. Technol. 211, 148–151 (2012). https://doi.org/10.1016/j.surfcoat.2011.06.059

    Article  CAS  Google Scholar 

  13. A.J. Bushby, N.M. Jennett, Determining the area function of spherical indenters for nanoindentation. MRS Online Proc. Libr. Arch. (2000). https://doi.org/10.1557/PROC-649-Q7.17

    Article  Google Scholar 

  14. M.R. VanLandingham, J.S. Villarrubia, R.M. Camara, Measuring tip shape for instrumented indentation using atomic force microscopy (2017), https://www.nist.gov/publications/measuring-tip-shape-instrumented-indentation-using-atomic-force-microscopy. Accessed 16 Mar 2021.

  15. A.S. Useinov, K.S. Kravchuk, A.A. Rusakov, I.V. Krasnogorov, A.P. Kuznetsov, T.V. Kazieva, Indenter shape characterization for the nanoindentation measurement of nanostructured and other types of materials. Phys. Procedia 72, 194–198 (2015). https://doi.org/10.1016/j.phpro.2015.09.060

    Article  CAS  Google Scholar 

  16. G. Aldrich-Smith, N.M. Bennett, U. Hangen, Direct measurement of nanoindentation area function by metrological AFM. Z. Für Met. 96, 1267–1271 (2005). https://doi.org/10.3139/146.101173

    Article  CAS  Google Scholar 

  17. K. Herrmann, N.M. Jennett, W. Wegener, J. Meneve, K. Hasche, R. Seemann, Progress in determination of the area function of indenters used for nanoindentation. Thin Solid Films 7, 394 (2000)

    Article  Google Scholar 

  18. K. Herrmann, K. Hasche, F. Pohlenz, R. Seemann, Characterisation of the geometry of indenters used for the micro- and nanoindentation method. Measurement 7, 201 (2001)

    Article  Google Scholar 

  19. J. Krier, J. Breuils, L. Jacomine, H. Pelletier, Introduction of the real tip defect of Berkovich indenter to reproduce with FEM nanoindentation test at shallow penetration depth. J. Mater. Res. 27, 12 (2012)

    Article  Google Scholar 

  20. E.G. Herbert, G.M. Pharr, W.C. Oliver, B.N. Lucas, J.L. Hay, On the measurement of stress strain curves by spherical indentation. Thin Solid Films 398–399, 331–335 (2001)

    Article  Google Scholar 

  21. J. Field, M. Swain, A simple predictive model for spherical indentation. J. Mater. Res. 8, 297–306 (1993)

    Article  CAS  Google Scholar 

  22. D. Chicot, M.Y. N’Jock, E.S. Puchi-Cabrera, A. Iost, M.H. Staia, G. Louis, G. Bouscarrat, R. Aumaitre, A contact area function for Berkovich nanoindentation: application to hardness determination of a TiHfCN thin film. Thin Solid Films 558, 259–266 (2014)

    Article  CAS  Google Scholar 

  23. C. Tromas, J.C. Stinville, C. Templier, P. Villechaise, Hardness and elastic modulus gradients in plasma-nitrided 316L polycrystalline stainless steel investigated by nanoindentation tomography. Acta Mater. 60, 1965–1973 (2012). https://doi.org/10.1016/j.actamat.2011.12.012

    Article  CAS  Google Scholar 

  24. N.X. Randall, M. Vandamme, F.-J. Ulm, Nanoindentation analysis as a two-dimensional tool for mapping the mechanical properties of complex surfaces. J. Mater. Res. 24, 679–690 (2009). https://doi.org/10.1557/jmr.2009.0149

    Article  CAS  Google Scholar 

  25. F.-J. Ulm, M. Vandamme, H.M. Jennings, J. Vanzo, M. Bentivegna, K.J. Krakowiak, G. Constantinides, C.P. Bobko, K.J.V. Vliet, Does microstructure matter for statistical nanoindentation techniques? Cem. Concr. Compos. (2010). https://doi.org/10.1016/j.cemconcomp.2009.07.001

    Article  Google Scholar 

  26. P. Haušild, J. Čech, A. Materna, J. Matějíček, Statistical treatment of grid indentation considering the effect of the interface and the microstructural length scale. Mech. Mater. 129, 99–103 (2019). https://doi.org/10.1016/j.mechmat.2018.11.006

    Article  Google Scholar 

  27. J. Malzbender, J.M.J. den Toonder, A.R. Balkenende, G. de With, Measuring mechanical properties of coatings: a methodology applied to nano-particle-filled sol–gel coatings on glass. Mater. Sci. Eng. R Rep. 36, 47–103 (2002). https://doi.org/10.1016/S0927-796X(01)00040-7

    Article  Google Scholar 

  28. M. Sakai, Energy principle of the indentation-induced inelastic surface deformation and hardness of brittle materials. Acta Metall. Mater. 41, 1751–1758 (1993). https://doi.org/10.1016/0956-7151(93)90194-W

    Article  CAS  Google Scholar 

  29. J. Čech, P. Haušild, O. Kovářík, A. Materna, Examination of Berkovich indenter tip bluntness. Mater. Des. 109, 347–353 (2016). https://doi.org/10.1016/j.matdes.2016.07.033

    Article  Google Scholar 

  30. M. Troyon, L. Huang, Correction factor for contact area in nanoindentation measurements. J. Mater. Res. 20, 610–617 (2005). https://doi.org/10.1557/JMR.2005.0099

    Article  CAS  Google Scholar 

  31. J.H. Lee, H. Lee, D.H. Kim, A numerical approach to evaluation of elastic modulus using conical indenter with finite tip radius. J. Mater. Res. 23, 2528–2537 (2008). https://doi.org/10.1557/jmr.2008.0314

    Article  CAS  Google Scholar 

  32. Y.-T. Cheng, C.-M. Cheng, Further analysis of indentation loading curves: effects of tip rounding on mechanical property measurements. J. Mater. Res. 13, 1059–1064 (1998). https://doi.org/10.1557/JMR.1998.0147

    Article  CAS  Google Scholar 

  33. L.A. Berla, A.M. Allen, S.M. Han, W.D. Nix, A physically based model for indenter tip shape calibration for nanoindentation. J. Mater. Res. 25, 11 (2010)

    Article  Google Scholar 

  34. J.M. Wheeler, J. Michler, Invited article: Indenter materials for high temperature nanoindentation. Rev. Sci. Instrum. 84, 101301 (2013)

    Article  CAS  Google Scholar 

  35. L. Pastewka, S. Moser, P. Gumbsch, M. Moseler, Anisotropic mechanical amorphization drives wear in diamond. Nat. Mater. 10(1), 34–38 (2011). https://doi.org/10.1038/nmat2902

    Article  CAS  Google Scholar 

  36. S.J. Zhang, S. To, G.Q. Zhang, Diamond tool wear in ultra-precision machining. Int. J. Adv. Manuf. Technol. 88(1), 613–641 (2017). https://doi.org/10.1007/s00170-016-8751-9

    Article  Google Scholar 

  37. X.D. Hou, N.M. Jennett, Defining the limits to long-term nano-indentation creep measurement of viscoelastic materials. Polym. Test. 70, 297–309 (2018). https://doi.org/10.1016/j.polymertesting.2018.07.022

    Article  CAS  Google Scholar 

  38. J. Nohava, G. Berthout, R. Consiglio, New ultra low load indentation device with extremely low thermal drift: principle and experimental results. Matér. Tech. 96, 121–127 (2008). https://doi.org/10.1051/mattech/2009018

    Article  CAS  Google Scholar 

  39. J.E. Jakes, Improved methods for nanoindentation Berkovich Probe calibrations using fused silica. J. Mater. Sci. 53(7), 4814–4827 (2018). https://doi.org/10.1007/s10853-017-1922-8

    Article  CAS  Google Scholar 

  40. D.L. Joslin, W.C. Oliver, A new method for analyzing data from continuous depth-sensing microindentation tests. J. Mater. Res. 5(1), 123–126 (1990). https://doi.org/10.1557/JMR.1990.0123

    Article  CAS  Google Scholar 

  41. C. Saringer, M. Tkadletz, M. Kratzer, M.J. Cordill, Direct determination of the area function for nanoindentation experiments. J. Mater. Res. (2021). https://doi.org/10.1557/s43578-021-00113-9

    Article  Google Scholar 

  42. N.M. Jennett, G. Shafirstein, S.R.J. Saunders, Comparison of inderter tip shape measurement using a calibrated AFM and indentation into fused silica., in Hardness Test. Theory Pract. VDI BERICHTE 1194, (VDI-Verlag GmbH, Dusseldorf, 1995), pp. 201–210. https://eprintspublications.npl.co.uk/480/. Accessed 26 Nov 2020.

  43. A.C. Fischer-Cripps, The sharpness of a Berkovich indenter. J. Mater. Res. 25, 927–934 (2010). https://doi.org/10.1557/JMR.2010.0111

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by European Regional Development Fund in the frame of the project Centre of Advanced Applied Sciences (No. CZ.02.1.01/0.0/0.0/16_019/0000778).

Author information

Authors and Affiliations

Authors

Contributions

JN: design of experiment, experimental work, analysis of indentation data, manuscript writing. JČ: design of experiment, analysis of indentation and AFM data, manuscript writing. MH: AFM experiments, writing of AFM related sections. RC: analysis of indentation data, consultations and manuscript corrections.

Corresponding author

Correspondence to Jiri Nohava.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1438 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nohava, J., Čech, J., Havlíček, M. et al. Indenter wear study and proposal of a simple method for evaluation of indenter blunting. Journal of Materials Research 36, 4449–4459 (2021). https://doi.org/10.1557/s43578-021-00401-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00401-4

Keywords

Navigation