Skip to main content

Advertisement

Log in

Constructing advanced high-performance sodium-ion batteries anode materials via the morphology tuning strategy of lignin-derived carbon

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Hard carbon as an ideal sodium-ion anode benefited from its superior performance and low cost. Generally, the lignin-derived hard carbons prepared by direct carbonization show poor performance. Regulating the morphology and microstructure is an effective strategy to enhance its performance. Herein, we designed three lignin-derived hard carbons to investigate the influence of the morphology of carbon materials on electrochemical performance. Specifically, we used self-assembly method, template method, and chemical activation to prepare the carbonaceous materials with different morphology. Electrochemical tests exhibited that self-assembled carbon nanospheres carbonized at 800 °C, solid carbon nanospheres, and carbon flakes are cycled for 100 cycles at a current density of 100 mA g−1, the reversible specific capacities of the above materials are 138.1 mAh g−1 and 83.1 mAh g−1, 130.9 mAh g−1, respectively. This study shows that both the microstructure and morphology play critical roles in sodium storage in carbon anode for SIBs.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. T. Kim, W. Song, D.Y. Son, L.K. Ono, Y. Qi, Lithium-ion batteries: outlook on present future and hybridized technologies. J. Mater. Chem. A 7, 172 (2019)

    Google Scholar 

  2. M. Waqas, S. Ali, C. Feng, D. Chen, J. Han, W. He, Recent development in separators for high-temperature lithium-ion batteries. Small 5, 1901689 (2019)

    Article  CAS  Google Scholar 

  3. G. Qian, X. Liao, Y. Zhu, F. Pan, X. Chen, Y. Yang, Designing flexible lithium-ion batteries by structural engineering. ACS Energy Lett 4, 690 (2019)

    Article  CAS  Google Scholar 

  4. A.A. Kuz’minaa, T.L. Kulovaa, E.K. Tuseevaa, E.V. Chirkovaa, Specific features in the low-temperature performance of electrodes of lithium-ion battery. Russ. J. Electrochem. 56, 899 (2020)

    Article  Google Scholar 

  5. X. Sun, H. Hao, F. Zhao, Z. Liu, Global lithium flow 1994–2015: implications for improving resource efficiency and security. Environ. Sci. Technol. 52, 2827 (2018)

    Article  CAS  Google Scholar 

  6. H. Ambrose, A. Kendall, Understanding the future of lithium: Part 1 resource model. J. Ind. Ecol. 24, 80 (2020)

    Article  Google Scholar 

  7. S.Y. Hong, Y. Kim, Y. Park, Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energ. Environ. Sci. 45, 2067 (2014)

    Google Scholar 

  8. S. Qi, F. Li, J. Wang, Y. Qu, Y. Yang, W. Li, M. Zhao, Prediction of a flexible anode material for Li/Na ion batteries: phosphorous carbide monolayer (α-PC). Carbon 14, 444 (2019)

    Article  CAS  Google Scholar 

  9. H. Su, H. Yu, Composite-structure materials for Na-ion batteries. Small Methods 3, 1800205 (2019)

    Article  CAS  Google Scholar 

  10. T.L. Kulovaa, A.M. Skundina, The use of phosphorus in sodium-ion batteries (a review). Russ. J. Electrochem. 56, 1 (2020)

    Article  Google Scholar 

  11. J. Xu, Y. Dou, Z. Wei, J. Ma, Y. Deng, Y. Li, H. Liu, S. Dou, Recent progress in graphite intercalation compounds for rechargeable metal (Li Na K Al)-Ion batteries. Adv. Sci. 4, 1700146 (2017)

    Article  CAS  Google Scholar 

  12. L. Yu, L.P. Wang, H. Liao, J. Wang, Z. Feng, O. Lev, J.S.C. Loo, M.T. Sougrati, Z.J. Xu, Understanding fundamentals and reaction mechanisms of electrode materials for Na-ion batteries. Small 14, 1703338 (2018)

    Article  CAS  Google Scholar 

  13. K. Hari Prasad, S. Vinoth, P. Jena, M. Venkateswarlu, Structural characterization and impedance studies of PbO nanofibers synthesized by electrospinning technique. Mater. Chem. Phys. 194, 188 (2017)

    Article  CAS  Google Scholar 

  14. K. Hari Prasad, S. Subramanian, T.N. Sairam, G. Amarendra, E.S. Srinadhu, N. Satyanarayana, Structural, electrical and dielectric properties of nanocrystalline LiMgBO3 particles synthesized by Pechini process. J. Alloy. Compd. 718, 459 (2017)

    Article  CAS  Google Scholar 

  15. Z. Li, Y. Chen, Z. Jian, H. Jiang, J.J. Razink, W.F. Stickle, J.C. Neuefeind, X. Ji, Defective hard carbon anode for Na-ion batteries. Chem. Mater. 30, 4536 (2018)

    Article  CAS  Google Scholar 

  16. X. Niu, J. Zhou, T. Qian, M. Wang, C. Yan, Confined silicon nanospheres by biomass lignin for stable lithium-ion battery. Nanotechnology 28, 405401 (2017)

    Article  CAS  Google Scholar 

  17. J. Ralph, C. Lapierre, W. Boerjan, Lignin structure and its engineering. Curr. Opin. Biotechnol. 56, 240 (2019)

    Article  CAS  Google Scholar 

  18. S.X. Wang, L. Yang, L.P. Stubbs, X. Li, C. He, Lignin-derived fused electrospun carbon fibrous mats as high-performance anode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces 5, 12275 (2013)

    Article  CAS  Google Scholar 

  19. F. Chen, W. Zhou, H. Yao, P. Fan, J. Yang, Z. Fei, M. Zhong, Self-assembly of NiO nanoparticles in lignin-derived mesoporous carbons for supercapacitor applications. Green Chem. 15, 3057 (2013)

    Article  CAS  Google Scholar 

  20. C. Chio, M. Sain, W. Qin, Lignin utilization: a review of lignin depolymerization from various aspects. Renew. Sust. Energ. Rev. 107, 232 (2019)

    Article  CAS  Google Scholar 

  21. J. Tang, Y. Yamauchi, MOF morphologies in control. Nat. Chem. 8, 638 (2016)

    Article  CAS  Google Scholar 

  22. P. Thirukumaran, R. Atchudan, A.S. Parveen, K. Kalaiarasan, Y.R. Lee, S.C. Kim, Fabrication of ZnO nanoparticles adorned nitrogen-doped carbon spherical particles and their application in photodegradation of organic dyes. Sci. Rep. 9, 19509 (2019)

    Article  CAS  Google Scholar 

  23. L. Yue, H. Zhao, Z. Wu, J. Liang, S. Lu, G. Chen, S. Gao, B. Zhong, X. Guo, X. Sun, Recent advances in electrospun one-dimensional carbon nanofiber structures/heterostructures as anode materials for sodium ion batteries. J. Mater. Chem. A 8, 11493 (2020)

    Article  CAS  Google Scholar 

  24. R. Sekiya, T. Haino, Chemically functionalized two-dimensional carbon materials. Chem. Asian J. 15, 2316 (2020)

    Article  CAS  Google Scholar 

  25. B.J. Gang, F. Zhang, X.L. Li, B. Zhai, X.Y. Wang, Y. Song, A ulva lactuca-derived porous carbon for high-performance electrode materials in supercapacitor: synergistic effect of porous structure and graphitization degree. J Energy Storage 31, 102132 (2021)

    Article  Google Scholar 

  26. J. Lin, L. Yao, Z. Li, P. Zhang, W. Zhong, Q. Yuan, L. Deng, Hybrid hollow spheres of carbon@CoxNi1-xMoO4 as advanced electrodes for high-performance asymmetric supercapacitors. Nanoscale 11, 3281 (2019)

    Article  CAS  Google Scholar 

  27. Z.C. Yang, Y. Zhang, J.H. Kong, S.Y. Wong, X. Li, J. Wang, Hollow carbon nanoparticles of tunable size and wall thickness by hydrothermal treatment of α-cyclodextrin templated by F127 block copolymers. Chem. Mater. 25, 704 (2013)

    Article  CAS  Google Scholar 

  28. Y.T. Tan, Y. Li, W.C. Wang, F. Ran, High performance electrode of few-layer-carbon@bulk-carbon synthesized via controlling diffusion depth from liquid phase to solid phase for supercapacitors. J. Energy Storage 32, 101672 (2020)

    Article  Google Scholar 

  29. Y. Liu, Z. Li, L. Yao, S. Chen, P. Zhang, L. Deng, Confined growth of NiCo2S4 nanosheets on carbon flakes derived from eggplant with enhanced performance for asymmetric supercapacitors. Chem. Eng. J. 366, 559 (2019)

    Article  Google Scholar 

  30. M. Miao, S. Zuo, Y. Zhao, Y. Wang, H. Xia, C. Tan, H. Gao, Selective oxidation rapidly decomposes biomass-based activated carbons into graphite-like crystallites. Carbon 140, 504 (2018)

    Article  CAS  Google Scholar 

  31. S. Wenzel, T. Hara, J. Janek, P. Adelhelm, Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies. Energy Environ. Sci. 4, 3342 (2011)

    Article  CAS  Google Scholar 

  32. S. Qiu, L. Xiao, M.L. Sushko, K.S. Han, Y.Y. Shao, M.Y. Yan, X.M. Liang, L.Q. Mai, J.W. Feng, Y.L. Cao, X.P. Ai, H.X. Yang, J. Liu, Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv. Energy Mater. 7, 1700403 (2017)

    Article  CAS  Google Scholar 

  33. L. Deng, R.J. Young, I.A. Kinloch, Y. Zhu, S.J. Eichhorn, Carbon nanofibres produced from electrospun cellulose nanofibers. Carbon 58, 66 (2013)

    Article  CAS  Google Scholar 

  34. Z. Zhou, F. Chen, T. Kuang, L. Chang, J. Yang, P. Fan, Z. Zhao, M. Zhong, Lignin-derived hierarchical mesoporous carbon and NiO hybrid nanospheres with exceptional Li-ion battery and pseudocapacitive properties. Electrochim. Acta 274, 288 (2018)

    Article  CAS  Google Scholar 

  35. G.C. Matei, B. Zhang, A.M. de Yuso, B. Réty, J.M. Tarascon, Valorizing low cost and renewable lignin as hard carbon for Na-ion batteries: impact of lignin grade. Carbon 153, 634 (2019)

    Article  CAS  Google Scholar 

  36. M. Lao, Y. Zhang, W. Luo, Q. Yan, W. Sun, S.X. Dou, Alloy-based anode materials toward advanced sodium-ion batteries. Adv. Mater. 29, 1700622 (2017)

    Article  CAS  Google Scholar 

  37. A. Naseem, S. Tabasum, K.M. Zia, M. Zuber, M. Ali, A. Noreen, Lignin-derivatives based polymers blends and composites: a review. Int. J. Biol. Macromol. 93, 296 (2016)

    Article  CAS  Google Scholar 

  38. K. Kim, D.G. Lim, C.W. Han, S. Osswald, V. Ortalan, J.P. Youngblood, V.G. Pol, Tailored carbon anodes derived from biomass for sodium-ion storagel. ACS Sustain. Chem. Eng. 5, 8720 (2017)

    Article  CAS  Google Scholar 

  39. H. Lu, F. Ai, Y. Jia, C. Tang, X. Zhang, Y. Huang, H. Yang, Y. Cao, Exploring sodium-ion storage mechanism in hard carbons with different microstructure prepared by Ball-Milling method. Small 14(39), 1802694 (2018)

    Article  CAS  Google Scholar 

  40. V.G. Pol, E. Lee, D.H. Zhou, F. Dogan, J.M. Calderon-Moreno, C.S. Johnson, Spherical carbon as a new high-rate anode for sodium-ion batteries. Electrochim Acta 127, 61 (2014)

    Article  CAS  Google Scholar 

  41. X. Lin, Y. Liu, H. Tan, B. Zhang, Advanced lignin-derived hard carbon for Na-ion batteries and a comparison with Li and K ion storage. Carbon 157, 316 (2020)

    Article  CAS  Google Scholar 

  42. D. Yoon, J. Hwang, W. Chang, J. Kim, Carbon with expanded and well-developed graphene planes derived directly from condensed lignin as a high-performance anode for sodium-ion batteries. ACS Appl. Mater. Interfaces 10, 569 (2018)

    Article  CAS  Google Scholar 

  43. Y. Xi, D. Yang, W. Liu, Y. Qin, X. Qiu, Preparation of porous lignin-derived carbon/carbon nanotube composites by hydrophobic self-assembly and carbonization to enhance lithium storage capacity. Electrochim. Acta. 303, 1 (2019)

    Article  CAS  Google Scholar 

  44. N. Sun, Z. Guan, Y. Liu, Y. Cao, Q. Zhu, H. Liu, Z. Wang, P. Zhang, B. Xu, Extended “Adsorption-Insertion” model: a new insight into the sodium storage mechanism of hard carbons. Adv. Energy. Mater. 9, 1901351 (2019)

    Article  CAS  Google Scholar 

  45. N.V. Kosova, O.A. Podgornova, Y.M. Volfkovich, Optimization of the cathode porosity via mechanochemical synthesis with carbon black. J. Solid State Electrochem. 25(3), 1029–1037 (2020)

    Article  CAS  Google Scholar 

  46. J. Jin, B.J. Yu, Z.Q. Shi, C.Y. Wang, C.B. Chong, Lignin-based electrospun carbon nanofibrous webs as free-standing and binder-free electrodes for sodium ion batteries. J. Power Sources 272, 800 (2014)

    Article  CAS  Google Scholar 

  47. V.V. Malev, M.A. Vorotyntsev, D.V. Anishchenko, Thermodynamic and kinetic aspects of charge transfer inside conducting polymer films. J. Solid State Electrochem. 24, 2703 (2020)

    Article  CAS  Google Scholar 

  48. Y. Xu, Y. Zhang, H. Chu, Lattice mismatch and twist partitioning at commensurate dichromatic pattern of two-phase interfaces. J Mater. Res. 36, 2623–2629 (2021)

    Article  CAS  Google Scholar 

  49. A. Chakraborty, A. Hunter, L. Capolungo, Effect of microstructure, layer thickness, and interface behavior on the plasticity of accumulative roll bonded nanometallic laminates using dislocation dynamics simulations. J Mater. Res. 5, 1–14 (2021)

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51774203), the Shenzhen Science and Technology Project Program (No. JCYJ20170818094047620), and Natural Science Foundation of Guangdong (2020A1414010087).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Libo Deng or Peixin Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, K., Yong, B. et al. Constructing advanced high-performance sodium-ion batteries anode materials via the morphology tuning strategy of lignin-derived carbon. Journal of Materials Research 36, 3460–3471 (2021). https://doi.org/10.1557/s43578-021-00378-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00378-0

Keywords

Navigation