Skip to main content

Advertisement

Log in

Embedded multimaterial bioprinting platform for biofabrication of biomimetic vascular structures

  • Invited Paper
  • Focus Issue: 3D Printing of Biomedical Materials and Devices
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The advent of bioprinting technology into the tissue engineering field has permitted the attainment of complex-shaped tissue constructs with unprecedented degree of precision and reproducibility, promising for the highly demanded tissue substitutes including vascular grafts. However, most of the bioprinted vascular tissue substitutes still lack multicellular composition and hierarchical complexity of native blood vessels. In this study, a multimaterial bioprinting platform incorporating multiple-channel microfluidic printhead was combined with embedded bioprinting technique for the fabrication of vascular-like constructs. Three different bioink formulations targeting intimal, medial, and adventitial zones of the natural vascular tissues were sequentially extruded from the microfluidic channels of printhead into a hydrogel-nanoclay support bath in a controlled manner to reach the biomimicry of vascular tissues. The results demonstrated the successful deposition of three bioink compositions into distinct zones within hollow structures, which would provide an opportunity for the construction of functional vascular substitutes.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. M. Singh, S. Jonnalagadda, Advances in bioprinting using additive manufacturing. Eur. J. Pharm. Sci. 143, 105167 (2020). https://doi.org/10.1016/j.ejps.2019.105167

    Article  CAS  Google Scholar 

  2. S. Pashneh-Tala, S. MacNeil, F. Claeyssens, The tissue-engineered vascular graft-past, present, and future. Tissue Eng. Part B 22, 68–100 (2016). https://doi.org/10.1089/ten.teb.2015.0100

    Article  CAS  Google Scholar 

  3. U.A. Stock, J.P. Vacanti, Tissue engineering: current state and prospects. Annu. Rev. Med. 52, 443–451 (2001). https://doi.org/10.1146/annurev.med.52.1.443

    Article  CAS  Google Scholar 

  4. J.C. Rose, L. De Laporte, Hierarchical design of tissue regenerative constructs. Adv. Healthc. Mater. 7, 1701067 (2018). https://doi.org/10.1002/adhm.201701067

    Article  CAS  Google Scholar 

  5. M.K. Pugsley, R. Tabrizchi, The vascular system. An overview of structure and function. J. Pharmacol. Toxicol. Methods 44, 333–340 (2000). https://doi.org/10.1016/s1056-8719(00)00125-8

    Article  CAS  Google Scholar 

  6. J. Halper, Basic components of vascular connective tissue and extracellular matrix. Adv. Pharmacol. 81, 95–127 (2018). https://doi.org/10.1016/bs.apha.2017.08.012

    Article  CAS  Google Scholar 

  7. M. Coen, G. Gabbiani, M.-L. Bochaton-Piallat, Y.E. Chen, Myofibroblast-mediated adventitial remodeling. Arterioscler. Thromb. Vasc. Biol. 31, 2391–2396 (2011). https://doi.org/10.1161/ATVBAHA.111.231548

    Article  CAS  Google Scholar 

  8. H.-W. Kang, S.J. Lee, I.K. Ko et al., A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 34, 312–319 (2016). https://doi.org/10.1038/nbt.3413

    Article  CAS  Google Scholar 

  9. G. Gao, H. Kim, B.S. Kim et al., Tissue-engineering of vascular grafts containing endothelium and smooth-muscle using triple-coaxial cell printing. Appl. Phys. Rev. (2019). https://doi.org/10.1063/1.5099306

    Article  Google Scholar 

  10. W. Liu, Y.S. Zhang, M.A. Heinrich et al., Rapid continuous multi-material extrusion bioprinting. Adv. Mater. 29, 1–18 (2018). https://doi.org/10.1002/adma.201604630.Rapid

    Article  Google Scholar 

  11. M. Rocca, A. Fragasso, W. Liu et al., Embedded multimaterial extrusion bioprinting. SLAS Technol. 23, 154–163 (2018). https://doi.org/10.1177/2472630317742071

    Article  CAS  Google Scholar 

  12. T.J. Hinton, Q. Jallerat, R.N. Palchesko et al., Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci. Adv. 1, 1–10 (2015). https://doi.org/10.1126/sciadv.1500758

    Article  CAS  Google Scholar 

  13. F. Afghah, M. Altunbek, C. Dikyol, B. Koc, Preparation and characterization of nanoclay-hydrogel composite support-bath for bioprinting of complex structures. Sci. Rep. 10, 5257 (2020). https://doi.org/10.1038/s41598-020-61606-x

    Article  CAS  Google Scholar 

  14. A. Lee, A.R. Hudson, D.J. Shiwarski et al., 3D bioprinting of collagen to rebuild components of the human heart. Science (80-) 365, 482–487 (2019). https://doi.org/10.1126/science.aav9051

    Article  CAS  Google Scholar 

  15. Y. Jin, A. Compaan, W. Chai, Y. Huang, Functional nanoclay suspension for printing-then-solidification of liquid materials. ACS Appl. Mater. Interfaces 9, 20057–20066 (2017). https://doi.org/10.1021/acsami.7b02398

    Article  CAS  Google Scholar 

  16. O. Jeon, L.Y. Bin, H. Jeong et al., Individual cell-only bioink and photocurable supporting medium for 3D printing and generation of engineered tissues with complex geometries. Mater. Horiz. 6, 1625–1631 (2019). https://doi.org/10.1039/C9MH00375D

    Article  CAS  Google Scholar 

  17. R. Levato, T. Jungst, R.G. Scheuring et al., From shape to function: the next step in bioprinting. Adv. Mater. (2020). https://doi.org/10.1002/adma.201906423

    Article  Google Scholar 

  18. W. Jia, P.S. Gungor-Ozkerim, Y.S. Zhang et al., Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials 106, 58–68 (2016). https://doi.org/10.1016/j.biomaterials.2016.07.038

    Article  CAS  Google Scholar 

  19. Q. Pi, S. Maharjan, X. Yan et al., Digitally tunable microfluidic bioprinting of multilayered cannular tissues. Adv. Mater. 30, 1–10 (2018). https://doi.org/10.1002/adma.201706913

    Article  CAS  Google Scholar 

  20. S. Hong, J.S. Kim, B. Jung et al., Coaxial bioprinting of cell-laden vascular constructs using a gelatin-tyramine bioink. Biomater. Sci. 7, 4578–4587 (2019). https://doi.org/10.1039/c8bm00618k

    Article  CAS  Google Scholar 

  21. J. He, J. Shao, X. Li et al., Bioprinting of coaxial multicellular structures for a 3D co-culture model. Bioprinting 11, e00036 (2018). https://doi.org/10.1016/j.bprint.2018.e00036

    Article  Google Scholar 

  22. G. Gao, J.H. Lee, J. Jang et al., Tissue engineered bio-blood-vessels constructed using a tissue-specific bioink and 3D coaxial cell printing technique: a novel therapy for ischemic disease. Adv. Funct. Mater. 27, 1–12 (2017). https://doi.org/10.1002/adfm.201700798

    Article  CAS  Google Scholar 

  23. G.A. Holzapfel, G. Sommer, M. Auer et al., Layer-specific 3D residual deformations of human aortas with non-atherosclerotic intimal thickening. Ann. Biomed. Eng. 35, 530–545 (2007). https://doi.org/10.1007/s10439-006-9252-z

    Article  Google Scholar 

  24. C.A.J. Schulze-Bauer, C. Mörth, G.A. Holzapfel, Passive biaxial mechanical response of aged human iliac arteries. J. Biomech. Eng. 125, 395–406 (2003). https://doi.org/10.1115/1.1574331

    Article  Google Scholar 

  25. A.I. Van Den Bulcke, B. Bogdanov, N. De Rooze et al., Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromol 1, 31–38 (2000). https://doi.org/10.1021/bm990017d

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Cigdem Bilici for her assistance during GelMA synthesis and characterization. The authors acknowledge Sabanci University and Sabanci University Nanotechnology Research and Application Center (SUNUM). This research is partially supported by the Scientific and Technological Research Council of Turkey (TUBITAK) Grant Number 218S678.

Author information

Authors and Affiliations

Authors

Contributions

CD contributed to the design and assembly of multimaterial bioprinting platform, preparation of bioink, bioprinting path planning and bioprinting processes, cellular studies, and confocal microscopy imaging. M.A. contributed cellular studies and confocal microscopy imaging. B.K was responsible for the overall research direction.

Corresponding author

Correspondence to Bahattin Koc.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dikyol, C., Altunbek, M. & Koc, B. Embedded multimaterial bioprinting platform for biofabrication of biomimetic vascular structures. Journal of Materials Research 36, 3851–3864 (2021). https://doi.org/10.1557/s43578-021-00254-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00254-x

Navigation