Skip to main content

Advertisement

Log in

3D-printed interdigital electrodes for electrochemical energy storage devices

  • Invited Feature Paper-Review
  • Focus Issue: 3D-Printed Electrodes for Energy Storage
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Interdigital electrochemical energy storage (EES) device features small size, high integration, and efficient ion transport, which is an ideal candidate for powering integrated microelectronic systems. However, traditional manufacturing techniques have limited capability in fabricating the microdevices with complex microstructure. Three-dimensional (3D) printing, as an emerging advanced manufacturing technology in rapid prototyping of 3D microstructures, can fabricate interdigital EES devices with highly controllable structure. The integration of 3D printing and interdigital devices provides great advantages in electrochemical energy storage. In this review, we discuss the common 3D printing techniques for interdigital EES devices fabrication, then the corresponding material requirements are also introduced. Recent significant research progress made in 3D-printed interdigital electrodes of batteries and supercapacitors are highlighted. Finally, to facilitate further development of 3D-printed interdigital EES devices, relevant challenges are summarized and some prospects are also proposed.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Adapted from Ref. [33]. (b) In IJP, inks are deposited on substrate. Adapted from Ref. [34]. (c) SLA uses the photopolymer. (d) SLS uses a laser to sinter or fuse the powder particles. Adapted from Ref. [33].

Figure 3

Adapted from Ref. [58]. (d–f) SEM images of printed different structures using conformal ink, and (g–i) self-supporting ink. (j) Schematic diagram of printed LLZO grids filled by Li metal. (k) SEM images of the interface between LLZO lines and Li Metal. Adapted from Ref. [67].

Figure 4

Adapted from Ref. [74]. (f–h) Optical images of the LFO/GO and LTO/GO ink, and the interdigital electrode was printed using LFO/GO and LTO/GO ink. (i) Apparent viscosity as a function of shear rate for GO-based inks, including GO, GO/LFP, and GO/LTO. Adapted from Ref. [47].

Figure 5

Adapted from Ref. [54].

Figure 6

Adapted from Ref. [25].

Figure 7

Adapted from Ref. [84].

Figure 8

Adapted from Ref. [93].

Similar content being viewed by others

References

  1. T.Q. Trung, N.E. Lee, Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Adv. Mater. 28, 4338–4372 (2016). https://doi.org/10.1002/adma.201504244

    Article  CAS  Google Scholar 

  2. Y.F. Guo, S. Chen, L.J. Sun, L. Yang, L.Z. Zhang, J.M. Lou, Z.W. You, Degradable and fully recyclable dynamic thermoset elastomer for 3D-Printed wearable electronics. Adv. Funct. Mater. 31, 2009799 (2020). https://doi.org/10.1002/adfm.202009799

    Article  CAS  Google Scholar 

  3. J.X. Zhao, Y. Zhang, Y.N. Huang, J.X. Xie, X.X. Zhao, C.W. Li, J.Y. Qu, Q.C. Zhang, J. Sun, B. He, Q.L. Li, C.H. Lu, X.H. Xu, W.B. Lu, L.Q. Li, Y.G. Yao, 3D printing fiber electrodes for an all-fiber integrated electronic device via hybridization of an asymmetric supercapacitor and a temperature sensor. Adv. Sci. 5, 1801114 (2018). https://doi.org/10.1002/advs.201801114

    Article  CAS  Google Scholar 

  4. Z.L. Wang, Toward self-powered sensor networks. Nano Today 5, 512–514 (2010). https://doi.org/10.1016/j.nantod.2010.09.001

    Article  Google Scholar 

  5. Y. Khan, A.E. Ostfeld, C.M. Lochner, A. Pierre, A.C. Arias, Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater. 28, 4373–4395 (2016). https://doi.org/10.1002/adma.201504366

    Article  CAS  Google Scholar 

  6. G. Milczarek, O. Inganäs, Renewable cathode materials from biopolymer/conjugated polymer interpenetrating networks. Science 335, 1468 (2012). https://doi.org/10.1126/science.1218316

    Article  CAS  Google Scholar 

  7. G.P. Wang, L. Zhang, J.J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012). https://doi.org/10.1039/c1cs15060j

    Article  CAS  Google Scholar 

  8. M. Pumera, Graphene-based nanomaterials for energy storage. Energy Environ. Sci. 4, 668–674 (2011). https://doi.org/10.1039/c0ee00295j

    Article  CAS  Google Scholar 

  9. Y. Shi, C. Eze, B.Y. Xiong, W.D. He, H. Zhang, T.M. Lim, A. Ukil, J.Y. Zhao, Recent development of membrane for vanadium redox flow battery applications: a review. Appl. Energy 238, 202–224 (2019). https://doi.org/10.1016/j.apenergy.2018.12.087

    Article  CAS  Google Scholar 

  10. K.F. Chen, D.F. Xue, Materials chemistry toward electrochemical energy storage. J. Mater. Chem. A 4, 7522–7537 (2016). https://doi.org/10.1039/c6ta01527a

    Article  CAS  Google Scholar 

  11. N.H. Liu, Y.H. Gao, Recent progress in micro-supercapacitors with in-plane interdigital electrode architecture. Small 13, 1701989 (2017). https://doi.org/10.1002/smll.201701989

    Article  CAS  Google Scholar 

  12. J. Lin, C.G. Zhang, Z. Yan, Y. Zhu, Z.W. Peng, R.H. Hauge, D. Natelson, J.M. Tour, 3-Dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance. Nano Lett. 13, 72–78 (2013). https://doi.org/10.1021/nl3034976

    Article  CAS  Google Scholar 

  13. Z.M. Hao, L. Xu, Q. Liu, W. Yang, X.B. Liao, J.S. Meng, X.F. Hong, L. He, L.Q. Mai, On-chip Ni–Zn microbattery based on hierarchical ordered porous Ni@Ni(OH)2 microelectrode with ultrafast ion and electron transport kinetics. Adv. Funct. Mater. 29, 1808470 (2019). https://doi.org/10.1002/adfm.201808470

    Article  CAS  Google Scholar 

  14. L. Li, C.W. Fu, Z. Lou, S. Chen, W. Han, K. Jiang, D. Chen, G.Z. Shen, Flexible planar concentric circular micro-supercapacitor arrays for wearable gas sensing application. Nano Energy 41, 261–268 (2017). https://doi.org/10.1016/j.nanoen.2017.08.060

    Article  CAS  Google Scholar 

  15. L.C. Hwa, S. Rajoo, A.M. Noor, N. Ahmad, M.B. Uday, Recent advances in 3D printing of porous ceramics: a review. Curr. Opin. Solid State Mater. Sci. 21, 323–347 (2017). https://doi.org/10.1016/j.cossms.2017.08.002

    Article  CAS  Google Scholar 

  16. W.H. Lai, Y. Wang, Z.W. Lei, R.H. Wang, Z.Y. Lin, C.P. Wong, F.Y. Kang, C. Yang, High performance, environmentally benign and integratable Zn//MnO2 microbatteries. J. Mater. Chem. A 6, 3933–3940 (2018). https://doi.org/10.1039/c7ta10936a

    Article  CAS  Google Scholar 

  17. G.Q. Sun, X.T. Jin, H.S. Yang, J. Gao, L.T. Qu, An aqueous Zn–MnO2 rechargeable microbattery. J. Mater. Chem. A 6, 10926–10931 (2018). https://doi.org/10.1039/c8ta02747a

    Article  CAS  Google Scholar 

  18. M. Beidaghi, C.L. Wang, Micro-supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance. Adv. Funct. Mater. 22, 4501–4510 (2012). https://doi.org/10.1002/adfm.201201292

    Article  CAS  Google Scholar 

  19. M. Wei, F. Zhang, W. Wang, P. Alexandridis, C. Zhou, G. Wu, 3D direct writing fabrication of electrodes for electrochemical storage devices. J. Power Sources 354, 134–147 (2017). https://doi.org/10.1016/j.jpowsour.2017.04.042

    Article  CAS  Google Scholar 

  20. S.A.M. Tofail, E.P. Koumoulos, A. Bandyopadhyay, S. Bose, L. O’Donoghue, C. Charitidis, Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Mater. Today 21, 22–37 (2018). https://doi.org/10.1016/j.mattod.2017.07.001

    Article  Google Scholar 

  21. X.J. Gao, Q. Sun, X.F. Yang, J.N. Liang, A. Koo, W.H. Li, J.W. Liang, J.W. Wang, R.Y. Li, F.B. Holness, A.D. Price, S.L. Yang, T.K. Sham, X.L. Sun, Toward a remarkable Li–S battery via 3D printing. Nano Energy 56, 595–603 (2019). https://doi.org/10.1016/j.nanoen.2018.12.001

    Article  CAS  Google Scholar 

  22. R.R. Kohlmeyer, A.J. Blake, J.O. Hardin, E.A. Carmona, J. Carpena-Núñez, B.J. Maruyama, J.D. Berrigan, H. Huang, M.F. Durstock, Composite batteries: a simple yet universal approach to 3D printable lithium-ion battery electrodes. J. Mater. Chem. A 4, 16856–16864 (2016). https://doi.org/10.1039/c6ta07610f

    Article  CAS  Google Scholar 

  23. C.W. Wu, B. Unnikrishnan, I.W.P. Chen, S.G. Harroun, H.T. Chang, C.C. Huang, Excellent oxidation resistive MXene aqueous ink for micro-supercapacitor application. Energy Storage Mater. 25, 563–571 (2020). https://doi.org/10.1016/j.ensm.2019.09.026

    Article  Google Scholar 

  24. Q.M. Chen, R. Xu, Z.T. He, K.J. Zhao, L. Pan, Printing 3D gel polymer electrolyte in lithium-ion microbattery using stereolithography. J. Electrochem. Soc. 164, A1852–A1857 (2017). https://doi.org/10.1149/2.0651709jes

    Article  CAS  Google Scholar 

  25. Q.W. Liu, G.F. Zhang, N. Chen, X.X. Feng, C.Z. Wang, J.Q. Wang, X.T. Jin, L.T. Qu, The first flexible dual-ion microbattery demonstrates superior capacity and ultrahigh energy density. Adv. Funct. Mater. 30, 2002086 (2020). https://doi.org/10.1002/adfm.202002086

    Article  CAS  Google Scholar 

  26. X.C. Tian, J. Jin, S.Q. Yuan, C.K. Chua, S.B. Tor, K. Zhou, Emerging 3D-printed electrochemical energy storage devices: a critical review. Adv. Energy Mater. 7, 1700127 (2017). https://doi.org/10.1002/aenm.201700127

    Article  CAS  Google Scholar 

  27. M.P. Browne, E. Redondo, M. Pumera, 3D printing for electrochemical energy applications. Chem. Rev. 120, 2783–2810 (2020). https://doi.org/10.1021/acs.chemrev.9b00783

    Article  CAS  Google Scholar 

  28. C. Zhang, K. Shen, B. Li, S.M. Li, S.B. Yang, Continuously 3D printed quantum dot-based electrodes for lithium storage with ultrahigh capacities. J. Mater. Chem. A 6, 19960–19966 (2018). https://doi.org/10.1039/c8ta08559e

    Article  CAS  Google Scholar 

  29. P.E. Delannoy, B. Riou, B. Lestriez, D. Guyomard, T. Brousse, J. Le Bideau, Toward fast and cost-effective ink-jet printing of solid electrolyte for lithium microbatteries. J. Power Sources 274, 1085–1090 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.164

    Article  CAS  Google Scholar 

  30. M.P. Down, E. Martínez-Periñán, C.W. Foster, E. Lorenzo, G.C. Smith, C.E. Banks, Next-generation additive manufacturing of complete standalone sodium-ion energy storage architectures. Adv. Energy Mater. 9, 1803019 (2019). https://doi.org/10.1002/aenm.201803019

    Article  CAS  Google Scholar 

  31. K. Fu, Y.G. Yao, J.Q. Dai, L.B. Hu, Progress in 3D printing of carbon materials for energy-related applications. Adv. Mater. 29, 1603486 (2017). https://doi.org/10.1002/adma.201603486

    Article  CAS  Google Scholar 

  32. A.D. Valentine, T.A. Busbee, J.W. Boley, J.R. Raney, A. Chortos, A. Kotikian, J.D. Berrigan, M.F. Durstock, J.A. Lewis, Hybrid 3D printing of soft electronics. Adv. Mater. 29, 1703817 (2017). https://doi.org/10.1002/adma.201703817

    Article  CAS  Google Scholar 

  33. A. Ambrosi, M. Pumera, 3D-printing technologies for electrochemical applications. Chem. Soc. Rev. 45, 2740–2755 (2016). https://doi.org/10.1039/c5cs00714c

    Article  CAS  Google Scholar 

  34. J. Malda, J. Visser, F.P. Melchels, T. Jungst, W.E. Hennink, W.J.A. Dhert, J. Groll, D.W. Hutmacher, 25th anniversary article: engineering hydrogels for biofabrication. Adv. Mater. 25, 5011–5028 (2013). https://doi.org/10.1002/adma.201302042

    Article  CAS  Google Scholar 

  35. J.A. Lewis, Direct ink writing of 3D functional materials. Adv. Funct. Mater. 16, 2193–2204 (2006). https://doi.org/10.1002/adfm.200600434

    Article  CAS  Google Scholar 

  36. M. Singh, H.M. Haverinen, P. Dhagat, G.E. Jabbour, Inkjet printing-process and its applications. Adv. Mater. 22, 673–685 (2010). https://doi.org/10.1002/adma.200901141

    Article  CAS  Google Scholar 

  37. K.H. Choi, J. Yoo, C.K. Lee, S.Y. Lee, All-inkjet-printed, solid-state flexible supercapacitors on paper. Energy Environ. Sci. 9, 2812–2821 (2016). https://doi.org/10.1039/c6ee00966b

    Article  CAS  Google Scholar 

  38. H.D. Wu, W. Liu, R.X. He, Z.W. Wu, Q.G. Jiang, X. Song, Y. Chen, L.X. Cheng, S.H. Wu, Fabrication of dense zirconia-toughened alumina ceramics through a stereolithography-based additive manufacturing. Ceram. Int. 43, 968–972 (2017). https://doi.org/10.1016/j.ceramint.2016.10.027

    Article  CAS  Google Scholar 

  39. F.P.W. Melchels, J. Feijen, D.W. Grijpma, A review on stereolithography and its applications in biomedical engineering. Biomaterials 31, 6121–6130 (2010). https://doi.org/10.1016/j.biomaterials.2010.04.050

    Article  CAS  Google Scholar 

  40. I. Gibson, D.P. Shi, Material properties and fabrication parameters in selective laser sintering process. Rapid Prototyping J. 3, 129–136 (1997). https://doi.org/10.1108/13552549710191836

    Article  Google Scholar 

  41. J. Bauer, A. Schroer, R. Schwaiger, O. Kraft, Approaching theoretical strength in glassy carbon nanolattices. Nat. Mater. 15, 438–443 (2016). https://doi.org/10.1038/nmat4561

    Article  CAS  Google Scholar 

  42. M. Cheng, R. Deivanayagam, R. Shahbazian-Yassar, 3D printing of electrochemical energy storage devices: a review of printing techniques and electrode/electrolyte architectures. Batteries Supercaps. 3, 130–146 (2020). https://doi.org/10.1002/batt.201900130

    Article  CAS  Google Scholar 

  43. M. Regehly, Y. Garmshausen, M. Reuter, N.F. Konig, E. Israel, D.P. Kelly, C.Y. Chou, K. Koch, B. Asfari, S. Hecht, Xolography for linear volumetric 3D printing. Nature 588, 620–624 (2020). https://doi.org/10.1038/s41586-020-3029-7

    Article  CAS  Google Scholar 

  44. X.C. Tian, K. Zhou, 3D printing of cellular materials for advanced electrochemical energy storage and conversion. Nanoscale 12, 7416–7432 (2020). https://doi.org/10.1039/d0nr00291g

    Article  CAS  Google Scholar 

  45. J.J. Huang, J.J. Yang, W.R. Li, W.B. Cai, Z.Y. Jiang, Electrochemical properties of LiCoO2 thin film electrode prepared by ink-jet printing technique. Thin Solid Films 516, 3314–3319 (2008). https://doi.org/10.1016/j.tsf.2007.09.039

    Article  CAS  Google Scholar 

  46. Y.B. Wang, C.J. Chen, H. Xie, T.T. Gao, Y.G. Yao, G. Pastel, X.G. Han, Y.J. Li, J.P. Zhao, K. Fu, L.B. Hu, 3D-printed all-fiber Li-ion battery toward wearable energy storage. Adv. Funct. Mater. 27, 1703140 (2017). https://doi.org/10.1002/adfm.201703140

    Article  CAS  Google Scholar 

  47. K. Fu, Y.B. Wang, C.Y. Yan, Y.G. Yao, Y.N. Chen, J.Q. Dai, S. Lacey, Y.B. Wang, J.Y. Wan, T. Li, Z.Y. Wang, Y. Xu, L.B. Hu, Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries. Adv. Mater. 28, 2587–2594 (2016). https://doi.org/10.1002/adma.201505391

    Article  CAS  Google Scholar 

  48. X.F. Lu, T.K. Zhao, X.L. Ji, J.T. Hu, T.H. Li, X. Lin, W.D. Huang, 3D printing well organized porous iron-nickel/polyaniline nanocages multiscale supercapacitor. J. Alloys Compd. 760, 78–83 (2018). https://doi.org/10.1016/j.jallcom.2018.05.165

    Article  CAS  Google Scholar 

  49. J.T. Hu, Y. Jiang, S.H. Cui, Y.D. Duan, T.C. Liu, H. Guo, L.P. Lin, Y. Lin, J.X. Zheng, K. Amine, F. Pan, 3D-printed cathodes of LiMn1xFexPO4 nanocrystals achieve both ultrahigh rate and high capacity for advanced lithium-ion battery. Adv. Energy Mater. 6, 1600856 (2016). https://doi.org/10.1002/aenm.201600856

    Article  CAS  Google Scholar 

  50. J.S. Cai, Z.D. Fan, J. Jin, Z.X. Shi, S.X. Dou, J.Y. Sun, Z.F. Liu, Expediting the electrochemical kinetics of 3D-printed sulfur cathodes for Li–S batteries with high rate capability and areal capacity. Nano Energy 75, 104970 (2020). https://doi.org/10.1016/j.nanoen.2020.104970

    Article  CAS  Google Scholar 

  51. S.D. Lacey, D.J. Kirsch, Y.J. Li, J.T. Morgenstern, B.C. Zarket, Y.G. Yao, J.Q. Dai, L.Q. Garcia, B.Y. Liu, T.T. Gao, S.M. Xu, S.R. Raghavan, J.W. Connell, Y. Lin, L.B. Hu, Extrusion-based 3D printing of hierarchically porous advanced battery electrodes. Adv. Mater. 30, e1705651 (2018). https://doi.org/10.1002/adma.201705651

    Article  CAS  Google Scholar 

  52. A. Maurel, M. Courty, B. Fleutot, H. Tortajada, K. Prashantha, M. Armand, S. Grugeon, S. Panier, L. Dupont, Highly loaded graphite–polylactic acid composite-based filaments for lithium-ion battery three-dimensional printing. Chem. Mater. 30, 7484–7493 (2018). https://doi.org/10.1021/acs.chemmater.8b02062

    Article  CAS  Google Scholar 

  53. S.Y. Lin, Y.J. Zhong, X.L. Zhao, T. Sawada, X.M. Li, W.H. Lei, M.R. Wang, T. Serizawa, H.W. Zhu, Synthetic multifunctional graphene composites with reshaping and self-healing features via a facile biomineralization-inspired process. Adv. Mater. 30, 1803004 (2018). https://doi.org/10.1002/adma.201803004

    Article  CAS  Google Scholar 

  54. D.X. Cao, Y.J. Xing, K. Tantratian, X. Wang, Y. Ma, A. Mukhopadhyay, Z. Cheng, Q. Zhang, Y.C. Jiao, L. Chen, H.L. Zhu, 3D printed high-performance lithium metal microbatteries enabled by nanocellulose. Adv. Mater. 31, 1807313 (2019). https://doi.org/10.1002/adma.201807313

    Article  CAS  Google Scholar 

  55. Y. Chen, Z.Y. Yu, Y.H. Ye, Y.F. Zhang, G.Y. Li, F. Jiang, Superelastic, hygroscopic, and ionic conducting cellulose nanofibril monoliths by 3D printing. ACS Nano 15, 1869–1879 (2021). https://doi.org/10.1021/acsnano.0c10577

    Article  CAS  Google Scholar 

  56. J.H. Kim, S. Lee, M. Wajahat, H. Jeong, W.S. Chang, H.J. Jeong, J.R. Yang, J.T. Kim, S.K. Seol, Three-dimensional printing of highly conductive carbon nanotube microarchitectures with fluid ink. ACS Nano 10, 8879–8887 (2016). https://doi.org/10.1021/acsnano.6b04771

    Article  CAS  Google Scholar 

  57. Y.Q. Liu, B.B. Zhang, Q. Xu, Y.Y. Hou, S.Y. Seyedin, S. Qin, G.G. Wallace, S. Beirne, J.M. Razal, J. Chen, Development of graphene oxide/polyaniline inks for high performance flexible microsupercapacitors via extrusion printing. Adv. Funct. Mater. 28, 1706592 (2018). https://doi.org/10.1002/adfm.201706592

    Article  CAS  Google Scholar 

  58. K. Shen, J.W. Ding, S.B. Yang, 3D printing quasi-solid-state asymmetric micro-supercapacitors with ultrahigh areal energy density. Adv. Energy Mater. 8, 1800408 (2018). https://doi.org/10.1002/aenm.201800408

    Article  CAS  Google Scholar 

  59. H. Gao, K. Lian, Proton-conducting polymer electrolytes and their applications in solid supercapacitors: a review. RSC Adv. 4, 33091–33113 (2014). https://doi.org/10.1039/c4ra05151c

    Article  CAS  Google Scholar 

  60. Z.Y. Xu, C.C. Fan, Q. Zhang, Y. Liu, C.Y. Cui, B. Liu, T.L. Wu, X.P. Zhang, W.G. Liu, A self-thickening and self-strengthening strategy for 3D printing high-strength and antiswelling supramolecular polymer hydrogels as meniscus substitutes. Adv. Funct. Mater. (2021). https://doi.org/10.1002/adfm.202100462

    Article  Google Scholar 

  61. L.G. Bettini, P. Piseri, F. De Giorgio, C. Arbizzani, P. Milani, F. Soavi, Flexible, ionic liquid-based micro-supercapacitor produced by supersonic cluster beam deposition. Electrochim. Acta 170, 57–62 (2015). https://doi.org/10.1016/j.electacta.2015.04.068

    Article  CAS  Google Scholar 

  62. B. Yiming, Y. Han, Z. Han, X. Zhang, Y. Li, W. Lian, M. Zhang, J. Yin, T. Sun, Z. Wu, T. Li, J. Fu, Z. Jia, S. Qu, A mechanically robust and versatile liquid-free ionic conductive elastomer. Adv. Mater. 33, 2006111 (2021). https://doi.org/10.1002/adma.202006111

    Article  CAS  Google Scholar 

  63. M. Cheng, Y.Z. Jiang, W.T. Yao, Y.F. Yuan, R. Deivanayagam, T. Foroozan, Z.N. Huang, B.A. Song, R. Rojaee, T. Shokuhfar, Y. Pan, J. Lu, R. Shahbazian-Yassar, Elevated-temperature 3D printing of hybrid solid-state electrolyte for Li-ion batteries. Adv. Mater. 30, 1800615 (2018). https://doi.org/10.1002/adma.201800615

    Article  CAS  Google Scholar 

  64. S.H. Kim, C.H. Choi, S.J. Cho, J.T. Yoo, S.S. Lee, S.Y. Lee, Flexible/shape-versatile, bipolar all-solid-state lithium-ion batteries prepared by multistage printing. Energy Environ. Sci. 11, 321–330 (2018). https://doi.org/10.1039/c7ee01630a

    Article  CAS  Google Scholar 

  65. L.X. Feng, K. Wang, X. Zhang, X.Z. Sun, C. Li, X.B. Ge, Y.W. Ma, Flexible solid-state supercapacitors with enhanced performance from hierarchically graphene nanocomposite electrodes and ionic liquid incorporated gel polymer electrolyte. Adv. Funct. Mater. 28, 1704463 (2018). https://doi.org/10.1002/adfm.201704463

    Article  CAS  Google Scholar 

  66. S. Zekoll, C. Marriner-Edwards, A.K.O. Hekselman, J. Kasemchainan, C. Kuss, D.E.J. Armstrong, D.Y. Cai, R.J. Wallace, F.H. Richter, J.H.J. Thijssen, P.G. Bruce, Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries. Energy Environ. Sci. 11, 185–201 (2018). https://doi.org/10.1039/c7ee02723k

    Article  CAS  Google Scholar 

  67. D.W. McOwen, S. Xu, Y. Gong, Y. Wen, G.L. Godbey, J.E. Gritton, T.R. Hamann, J. Dai, G.T. Hitz, L. Hu, E.D. Wachsman, 3D-printing electrolytes for solid-state batteries. Adv. Mater. 30, 1707132 (2018). https://doi.org/10.1002/adma.201707132

    Article  CAS  Google Scholar 

  68. C.J. Chae, J.H. Han, S.S. Lee, Y.M. Choi, T.H. Kim, S.H. Jeong, A printable metallic current collector for all-printed high-voltage micro-supercapacitors: instantaneous surface passivation by flash-light-sintering reaction. Adv. Funct. Mater. 30, 2000715 (2020). https://doi.org/10.1002/adfm.202000715

    Article  CAS  Google Scholar 

  69. L. Liu, Q. Lu, S.L. Yang, J. Guo, Q.Y. Tian, W.J. Yao, Z.H. Guo, V.A.L. Roy, W. Wu, All-printed solid-state microsupercapacitors derived from self-template synthesis of ag@ppy nanocomposites. Adv. Mater. Technol 3, 1700206 (2018). https://doi.org/10.1002/admt.201700206

    Article  CAS  Google Scholar 

  70. B.H. Xie, Y. Wang, W.H. Lai, W. Lin, Z.Y. Lin, Z.X. Zhang, P.C. Zou, Y. Xu, S. Zhou, C. Yang, F.Y. Kang, C.P. Wong, Laser-processed graphene based micro-supercapacitors for ultrathin, rollable, compact and designable energy storage components. Nano Energy 26, 276–285 (2016). https://doi.org/10.1016/j.nanoen.2016.04.045

    Article  CAS  Google Scholar 

  71. B.L. Chen, Y.Z. Jiang, X.H. Tang, Y.Y. Pan, S. Hu, Fully packaged carbon nanotube supercapacitors by direct ink writing on flexible substrates. ACS Appl. Mater. Interfaces 9, 28433–28440 (2017). https://doi.org/10.1021/acsami.7b06804

    Article  CAS  Google Scholar 

  72. T.S. Wei, B.Y. Ahn, J. Grotto, J.A. Lewis, 3D printing of customized Li-ion batteries with thick electrodes. Adv. Mater. 30, 1703027 (2018). https://doi.org/10.1002/adma.201703027

    Article  CAS  Google Scholar 

  73. Y. Liu, Y. Qiao, Y. Zhang, Z. Yang, T.T. Gao, D. Kirsch, B.Y. Liu, J.W. Song, B. Yang, L.B. Hu, 3D printed separator for the thermal management of high-performance Li metal anodes. Energy Storage Mater. 12, 197–203 (2018). https://doi.org/10.1016/j.ensm.2017.12.019

    Article  Google Scholar 

  74. K. Sun, T.S. Wei, B.Y. Ahn, J.Y. Seo, S.J. Dillon, J.A. Lewis, 3D printing of interdigitated Li-ion microbattery architectures. Adv. Mater. 25, 4539–4543 (2013). https://doi.org/10.1002/adma.201301036

    Article  CAS  Google Scholar 

  75. K. Shen, Z.J. Cao, Y.Z. Shi, Y.Z. Zhang, B. Li, S.B. Yang, 3D printing lithium salt towards dendrite-free lithium anodes. Energy Storage Mater. 35, 108–113 (2021). https://doi.org/10.1016/j.ensm.2020.11.022

    Article  Google Scholar 

  76. W.Y. Wu, J. Duan, J.Y. Wen, Y.W. Chen, X.Y. Liu, L.Q. Huang, Z.F. Wang, S.Y. Deng, Y.H. Huang, W. Luo, A writable lithium metal ink. Sci. China Chem. 63, 1483–1489 (2020). https://doi.org/10.1007/s11426-020-9810-1

    Article  CAS  Google Scholar 

  77. V.G. Rocha, E. Garcia-Tunon, C. Botas, F. Markoulidis, E. Feilden, E. D’Elia, N. Ni, M. Shaffer, E. Saiz, Multimaterial 3D printing of graphene-based electrodes for electrochemical energy storage using thermoresponsive inks. ACS Appl. Mater. Interfaces 9, 37136–37145 (2017). https://doi.org/10.1021/acsami.7b10285

    Article  CAS  Google Scholar 

  78. J.Y. Wu, Z.X. Rao, Z.X. Cheng, L.X. Yuan, Z. Li, Y.H. Huang, Ultrathin, flexible polymer electrolyte for cost-effective fabrication of all-solid-state lithium metal batteries. Adv. Energy Mater. 9, 1902767 (2019). https://doi.org/10.1002/aenm.201902767

    Article  CAS  Google Scholar 

  79. M. Cheng, A. Ramasubramanian, M.G. Rasul, Y.Z. Jiang, Y.F. Yuan, T. Foroozan, R. Deivanayagam, M.T. Saray, R. Rojaee, B. Song, V.R. Yurkiv, Y.Y. Pan, F. Mashayek, R. Shahbazian-Yassar, Direct ink writing of polymer composite electrolytes with enhanced thermal conductivities. Adv. Funct. Mater. 31, 2006683 (2020). https://doi.org/10.1002/adfm.202006683

    Article  CAS  Google Scholar 

  80. M.Y. Yan, Y.L. Zhao, L.Q. Mai, Track batteries degrading in real time. Nature 546, 469 (2017). https://doi.org/10.1038/546469a

    Article  CAS  Google Scholar 

  81. M. Drews, S. Tepner, P. Haberzettl, H. Gentischer, W. Beichel, M. Breitwieser, S. Vierrath, D. Biro, Towards 3D-lithium ion microbatteries based on silicon/graphite blend anodes using a dispenser printing technique. RSC Adv. 10, 22440–22448 (2020). https://doi.org/10.1039/d0ra03161e

    Article  CAS  Google Scholar 

  82. J.X. Zhao, H.Y. Lu, Y. Zhang, S.X. Yu, O.I. Malyi, X.X. Zhao, L.T. Wang, H.B. Wang, J.H. Peng, X.F. Li, Y.Y. Zhang, S. Chen, H. Pan, G.C. Xing, C.H. Lu, Y.X. Tang, X.D. Chen, Direct coherent multi-ink printing of fabric supercapacitors. Sci. Adv. 7, eabd6978 (2021). https://doi.org/10.1126/sciadv.abd6978

    Article  CAS  Google Scholar 

  83. V. Rajendran, A.M.V. Mohan, M. Jayaraman, T. Nakagawa, All-printed, interdigitated, freestanding serpentine interconnects based flexible solid state supercapacitor for self powered wearable electronics. Nano Energy 65, 104055 (2019). https://doi.org/10.1016/j.nanoen.2019.104055

    Article  CAS  Google Scholar 

  84. X.R. Li, H.P. Li, X.Q. Fan, X.L. Shi, J.J. Liang, 3D-printed stretchable micro-supercapacitor with remarkable areal performance. Adv. Energy Mater. 10, 1903794 (2020). https://doi.org/10.1002/aenm.201903794

    Article  CAS  Google Scholar 

  85. Y.M. Chen, M.H. Guo, L. He, W. Yang, L. Xu, J.S. Meng, X.C. Tian, X.Y. Ma, Q. Yu, K. Yang, X. Hong, L. Mai, Scalable microfabrication of three-dimensional porous interconnected graphene scaffolds with carbon spheres for high-performance all carbon-based micro-supercapacitors. J. Mater. 5, 303–312 (2019). https://doi.org/10.1016/j.jmat.2018.11.009

    Article  Google Scholar 

  86. W. Zhang, R. Li, H. Zheng, J.S. Bao, Y.J. Tang, K. Zhou, Laser-assisted printing of electrodes using metal-organic frameworks for micro-supercapacitors. Adv. Funct. Mater. (2021). https://doi.org/10.1002/adfm.202009057

    Article  Google Scholar 

  87. J. Orangi, F. Hamade, V.A. Davis, M. Beidaghi, 3D printing of additive-free 2D Ti3C2Tx (MXene) ink for fabrication of micro-supercapacitors with ultra-high energy densities. ACS Nano 14, 640–650 (2020). https://doi.org/10.1021/acsnano.9b07325

    Article  CAS  Google Scholar 

  88. Z.D. Fan, J. Jin, Li. Chao, J.S. Cai, C.H. Wei, Y.L. Shao, G.F. Zou, J.Y. Sun, 3D-printed Zn-ion hybrid capacitor enabled by universal divalent cation-gelated additive-free Ti3C2 MXene ink. ACS Nano 15, 3098–3107 (2021). https://doi.org/10.1021/acsnano.0c09646

    Article  CAS  Google Scholar 

  89. L.H. Yu, Z.D. Fan, Y.L. Shao, Z.N. Tian, J.Y. Sun, Z.F. Liu, Versatile N-doped MXene ink for printed electrochemical energy storage application. Adv. Energy Mater. 9, 1901839 (2019). https://doi.org/10.1002/aenm.201901839

    Article  CAS  Google Scholar 

  90. L.H. Yu, W.P. Li, C.H. Wei, Q.F. Yang, Y.L. Shao, J.Y. Sun, 3D Printing of NiCoP/Ti3C2 MXene architectures for energy storage devices with high areal and volumetric energy density. Nanomicro Lett. 12, 143 (2020). https://doi.org/10.1007/s40820-020-00483-5

    Article  CAS  Google Scholar 

  91. W.A. Haider, M. Tahir, L. He, H.A. Mirza, R.Q. Zhu, Y.L. Han, L.Q. Mai, Structural engineering and coupling of two-dimensional transition metal compounds for micro-supercapacitor electrodes. ACS Cent. Sci. 6, 1901–1915 (2020). https://doi.org/10.1021/acscentsci.0c01022

    Article  CAS  Google Scholar 

  92. S.H. Zheng, H. Wang, P. Das, Y. Zhang, Y.X. Cao, J.X. Ma, S.Z. Liu, Z.S. Wu, Multitasking MXene inks enable high-performance printable microelectrochemical energy storage devices for all-flexible self-powered integrated systems. Adv. Mater. 33, 2005449 (2021). https://doi.org/10.1002/adma.202005449

    Article  CAS  Google Scholar 

  93. W. Yang, J. Yang, J.J. Byun, F.P. Moissinac, J. Xu, S.J. Haigh, M. Domingos, M.A. Bissett, R.A.W. Dryfe, S. Barg, 3D printing of freestanding MXene architectures for current-collector-free supercapacitors. Adv. Mater. 31, 1902725 (2019). https://doi.org/10.1002/adma.201902725

    Article  CAS  Google Scholar 

  94. B. Akuzum, K. Maleski, B. Anasori, P. Lelyukh, N.J. Alvarez, E.C. Kumbur, Y. Gogotsi, Rheological characteristics of 2D titanium carbide (MXene) dispersions: a guide for processing MXenes. ACS Nano 12, 2685–2694 (2018). https://doi.org/10.1021/acsnano.7b08889

    Article  CAS  Google Scholar 

  95. C.J. Zhang, S. Pinilla, N. McEvoy, C.P. Cullen, B. Anasori, E. Long, S.H. Park, A. Seral-Ascaso, A. Shmeliov, D. Krishnan, C. Morant, X.H. Liu, G.S. Duesberg, Y. Gogotsi, V. Nicolosi, Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem. Mater. 29, 4848–4856 (2017). https://doi.org/10.1021/acs.chemmater.7b00745

    Article  CAS  Google Scholar 

  96. W. Yang, Y.X. Zhu, Z.F. Jia, L. He, L. Xu, J. Meng, M. Tahir, Z.X. Zhou, X.W. Wang, L.Q. Mai, Interwoven nanowire based on-chip asymmetric microsupercapacitor with high integrability, areal energy, and power density. Adv. Energy Mater. 10, 2001873 (2020). https://doi.org/10.1002/aenm.202001873

    Article  CAS  Google Scholar 

  97. Y.L. Shao, M.F. El-Kady, J.Y. Sun, Y.G. Li, Q.H. Zhang, M.F. Zhu, H.Z. Wang, B. Dunn, R.B. Kaner, Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 118, 9233–9280 (2018). https://doi.org/10.1021/acs.chemrev.8b00252

    Article  CAS  Google Scholar 

  98. W.B. Kang, L. Zeng, S.W. Ling, C.H. Zhang, 3D printed supercapacitors toward trinity excellence in kinetics, energy density, and flexibility. Adv. Energy Mater. 11, 2100020 (2021). https://doi.org/10.1002/aenm.202100020

    Article  CAS  Google Scholar 

  99. M.S. Onses, E. Sutanto, P.M. Ferreira, A.G. Alleyne, J.A. Rogers, Mechanisms, capabilities, and applications of high-resolution electrohydrodynamic jet printing. Small 34, 4237–4266 (2015). https://doi.org/10.1002/smll.201500593

    Article  CAS  Google Scholar 

  100. K.H. Lee, S.S. Lee, D.B. Ahn, J. Lee, D. Byun, S.Y. Lee, Ultrahigh areal number density solid-state on-chip microsupercapacitors via electrohydrodynamic jet printing. Sci. Adv. 6, 1692 (2020). https://doi.org/10.1126/sciadv.aaz1692

    Article  CAS  Google Scholar 

  101. B. Yao, S. Chandrasekaran, J. Zhang, W. Xiao, F. Qian, C. Zhu, E.B. Duoss, C.M. Spadaccini, M.A. Worsley, Y. Li, Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading. Joule 3, 459–470 (2019). https://doi.org/10.1016/j.joule.2018.09.020

    Article  CAS  Google Scholar 

  102. T. Wang, X.C. Tian, L. Li, L.H. Lu, S. Hou, G.Z. Cao, H.Y. Jin, 3D printing-based cellular microelectrodes for high-performance asymmetric quasi-solid-state micro-pseudocapacitors. J. Mater. Chem. A 8, 1749–1756 (2020). https://doi.org/10.1039/c9ta11386j

    Article  CAS  Google Scholar 

  103. F. Li, M. Huang, J.H. Wang, J. Qu, Y. Li, L.X. Liu, V.K. Bandari, Y. Hong, B.K. Sun, M.S. Zhu, F. Zhu, Y.X. Zhang, O.G. Schmidt, On-chip 3D interdigital micro-supercapacitors with ultrahigh areal energy density. Energy Storage Mater. 27, 17–24 (2020). https://doi.org/10.1016/j.ensm.2020.01.008

    Article  Google Scholar 

  104. Z. Wang, Q.E. Zhang, S. Long, Y. Luo, P. Yu, Z. Tan, J. Bai, B. Qu, Y. Yang, J. Shi, H. Zhou, Z.Y. Xiao, W. Hong, H. Bai, Three-dimensional printing of polyaniline/reduced graphene oxide composite for high-performance planar supercapacitor. ACS Appl. Mater. Interfaces 10, 10437–10444 (2018). https://doi.org/10.1021/acsami.7b19635

    Article  CAS  Google Scholar 

  105. W. Zhao, L. Wei, Q.G. Fu, X. Guo, High-performance, flexible, solid-state micro-supercapacitors based on printed asymmetric interdigital electrodes and bio-hydrogel for on-chip electronics. J. Power Sources 422, 73–83 (2019). https://doi.org/10.1016/j.jpowsour.2019.03.021

    Article  CAS  Google Scholar 

  106. K. Tang, H. Ma, Y.J. Tian, Z.X. Liu, H.Y. Jin, S. Hou, K. Zhou, X.C. Tian, 3D printed hybrid-dimensional electrodes for flexible micro-supercapacitors with superior electrochemical behaviours. Virtual Phys. Prototyp. 15, 511–519 (2020). https://doi.org/10.1080/17452759.2020.1842619

    Article  Google Scholar 

  107. X.C. Tian, K. Tang, H.Y. Jin, T. Wang, X.W. Liu, W. Yang, Z.C. Zou, S. Hou, K. Zhou, Boosting capacitive charge storage of 3D-printed micro-pseudocapacitors via rational holey graphene engineering. Carbon 155, 562–569 (2019). https://doi.org/10.1016/j.carbon.2019.08.089

    Article  CAS  Google Scholar 

  108. T. Wang, L. Li, X.C. Tian, H.Y. Jin, K. Tang, S. Hou, H. Zhou, X.H. Yu, 3D-printed interdigitated graphene framework as superior support of metal oxide nanostructures for remarkable micro-pseudocapacitors. Electrochim. Acta 319, 245–252 (2019). https://doi.org/10.1016/j.electacta.2019.06.163

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Research and Development Program of China (Grant No. 2020YFA715000), the National Natural Science Foundation of China (Grant No. 51802239), the National Key Research and Development Program of China (Grant No. 2019YFA0704902), Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory (Grant Nos. XHT2020-005, XHT2020-003), the Natural Science Foundation of Hubei Province (Grant No. 2019CFA001), the Fundamental Research Funds for the Central Universities (Grant Nos. WUT: 2020III011GX, 2020IVB057, 2019IVB054, 2019III062JL).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Xu or Liqiang Mai.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Chen, Y., Xu, L. et al. 3D-printed interdigital electrodes for electrochemical energy storage devices. Journal of Materials Research 36, 4489–4507 (2021). https://doi.org/10.1557/s43578-021-00243-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00243-0

Keywords

Navigation