Skip to main content
Log in

Inclination-governed deformation of dislocation-type grain boundaries

  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Grain boundaries (GBs) in polycrystalline materials are frequently curved, which differ from the well-documented planar GBs in terms of structure and dynamics. However, the physical origin of curvature-controlled GB deformation remains unclear. Here, combining in situ transmission electron microscopy (TEM) nanomechanical testing and atomistic simulation, we rationalize the fundamental influences of GB inclination on the deformation of curved dislocation-type GBs in face-centered cubic metals. Non-uniform motion of curved GB is revealed and attributed to the inclination-dependent dislocation configurations, which simultaneously change the energy and mobility of GBs. An inclination-governed GB model extending from the classic dislocation theory is further established via geometric analyses, where a universal inclination threshold of 35° is deduced to precisely predict the deformation behaviors of curved GBs. These findings enhance our mechanistic understanding of GB-mediated plasticity, shedding light on the structural design of metallic materials via precise GB engineering.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data and material availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. A.P. Sutton, R.W. Balluffi, Interfaces In Crystalline Materials (Oxford University Press, Oxford, 1996).

    Google Scholar 

  2. K. Lu, L. Lu, S. Suresh, Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 324, 349–352 (2009)

    Article  CAS  Google Scholar 

  3. X.M. Luo, X.F. Zhu, G.P. Zhang, Nanotwin-assisted grain growth in nanocrystalline gold films under cyclic loading. Nat. Commun. 5, 3021 (2014)

    Article  Google Scholar 

  4. T.J. Rupert, D.S. Gianola, Y. Gan, K.J. Hemker, Experimental observations of stress-driven grain boundary migration. Science 326, 1686–1690 (2009)

    Article  CAS  Google Scholar 

  5. J. Schiøtz, F.D. Di Tolla, K.W. Jacobsen, Softening of nanocrystalline metals at very small grain sizes. Nature 391, 561–563 (1998)

    Article  Google Scholar 

  6. Q. Zhu, G. Cao, J. Wang, C. Deng, J. Li, Z. Zhang, S.X. Mao, In situ atomistic observation of disconnection-mediated grain boundary migration. Nat. Commun. 10, 156 (2019)

    Article  Google Scholar 

  7. M. Legros, D.S. Gianola, K.J. Hemker, In situ TEM observations of fast grain-boundary motion in stressed nanocrystalline aluminum films. Acta Mater. 56, 3380–3393 (2008)

    Article  CAS  Google Scholar 

  8. S. Namilae, N. Chandra, T.G. Nieh, Atomistic simulation of grain boundary sliding in pure and magnesium doped aluminum bicrystals. Scr. Mater. 46, 49–54 (2002)

    Article  CAS  Google Scholar 

  9. M.J. McCarthy, T.J. Rupert, Shuffling mode competition leads to directionally anisotropic mobility of faceted Σ11 boundaries in fcc metals. Phys. Rev. Mater. 4, 113402 (2020)

    Article  CAS  Google Scholar 

  10. L. Wang, J. Teng, P. Liu, A. Hirata, E. Ma, Z. Zhang, M. Chen, X. Han, Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum. Nat. Commun. 5, 4402 (2014)

    Article  CAS  Google Scholar 

  11. Q. Zhu, Q. Huang, C. Guang, X. An, S.X. Mao, W. Yang, Z. Zhang, H. Gao, H. Zhou, J. Wang, Metallic nanocrystals with low angle grain boundary for controllable plastic reversibility. Nat. Commun. 11, 3100 (2020)

    Article  CAS  Google Scholar 

  12. J.P. Hirth, G. Hirth, J. Wang, Disclinations and disconnections in minerals and metals. Proc. Natl. Acad. Sci. USA 117, 196–204 (2019)

    Article  Google Scholar 

  13. A. Rajabzadeh, F. Mompiou, S. Lartigue-Korinek, N. Combe, M. Legros, D.A. Molodov, The role of disconnections in deformation-coupled grain boundary migration. Acta Mater. 77, 223–235 (2014)

    Article  CAS  Google Scholar 

  14. C. Wang, K. Du, K. Song, X. Ye, L. Qi, S. He, D. Tang, N. Lu, H. Jin, F. Li, H. Ye, Size-dependent grain-boundary structure with improved conductive and mechanical stabilities in sub-10-nm gold crystals. Phys. Rev. Lett. 120, 186102 (2018)

    Article  CAS  Google Scholar 

  15. J.W. Cahn, Y. Mishin, A. Suzuki, Coupling grain boundary motion to shear deformation. Acta Mater. 54, 4953–4975 (2006)

    Article  CAS  Google Scholar 

  16. F. Mompiou, M. Legros, D. Caillard, SMIG model: a new geometrical model to quantify grain boundary-based plasticity. Acta Mater. 58, 3676–3689 (2010)

    Article  CAS  Google Scholar 

  17. J. Han, S.L. Thomas, D.J. Srolovitz, Grain-boundary kinetics: a unified approach. Prog. Mater. Sci. 98, 386–476 (2018)

    Article  Google Scholar 

  18. Q. Zhu, S.C. Zhao, C. Deng, X.H. An, K.X. Song, S.X. Mao, J.W. Wang, In situ atomistic observation of grain boundary migration subjected to defect interaction. Acta Mater. 199, 42–52 (2020)

    Article  CAS  Google Scholar 

  19. F. Sansoz, J.F. Molinari, Mechanical behavior of Σ tilt grain boundaries in nanoscale Cu and Al: a quasicontinuum study. Acta Mater. 53, 1931–1944 (2005)

    Article  CAS  Google Scholar 

  20. N. Combe, F. Mompiou, M. Legros, Disconnections kinks and competing modes in shear-coupled grain boundary migration. Phys. Rev. B 93, 024109 (2016)

    Article  Google Scholar 

  21. G. Gottstein, D.A. Molodov, L.S. Shvindlerman, D.J. Srolovitz, M. Winning, Grain boundary migration: misorientation dependence. Curr. Opin. Solid State Mater. Sci. 5, 9–14 (2001)

    Article  CAS  Google Scholar 

  22. J.D. Rittner, D.N. Seidman, <110> symmetric tilt grain-boundary structures in fcc metals with low stacking-fault energies. Phys. Rev. B 54, 6999–7015 (1996)

    Article  CAS  Google Scholar 

  23. D.L. Olmsted, E.A. Holm, S.M. Foiles, Survey of computed grain boundary properties in face-centered cubic metals—II: Grain boundary mobility. Acta Mater. 57, 3704–3713 (2009)

    Article  CAS  Google Scholar 

  24. U. Wolf, F. Ernst, T. Muschik, M.W. Finnis, H.F. Fischmeister, The influence of grain boundary inclination on the structure and energy of σ = 3 grain boundaries in copper. Philos. Magn. A 66, 991–1016 (1992)

    Article  CAS  Google Scholar 

  25. W. Read, W. Shockley, Imperfections in Nearly Perfect Crystals (Wiley, New York, 1952).

    Google Scholar 

  26. J. Hirth, J. Lothe, Theory of Dislocations (Wiley, New York, 1982).

    Google Scholar 

  27. F. Mompiou, D. Caillard, M. Legros, Grain boundary shear–migration coupling—I. In situ TEM straining experiments in Al polycrystals. Acta Mater. 57, 2198–2209 (2009)

    Article  CAS  Google Scholar 

  28. K.L. Merkle, L.J. Thompson, F. Phillipp, In-situ HREM studies of grain boundary migration. Interface Sci. 12, 277–292 (2004)

    Article  CAS  Google Scholar 

  29. M. Winning, G. Gottstein, L.S. Shvindlerman, On the mechanisms of grain boundary migration. Acta Mater. 50, 353–363 (2002)

    Article  CAS  Google Scholar 

  30. J. Ciulik, E.M. Taleff, Dynamic abnormal grain growth: a new method to produce single crystals. Scr. Mater. 61, 895–898 (2009)

    Article  CAS  Google Scholar 

  31. Y. Chen, Q. Huang, Q. Zhu, K. Song, Y. Zhou, H. Zhou, J. Wang, Coordinated grain boundary deformation governed nanograin annihilation in shear cycling. J. Mater. Sci. Technol. 86, 180–191 (2021)

    Article  Google Scholar 

  32. D.A. Molodov, U. Czubayko, G. Gottstein, L.S. Shvindlerman, On the effect of purity and orientation on grain boundary motion. Acta Mater. 46, 553–564 (1998)

    Article  CAS  Google Scholar 

  33. A.J. Haslam, D. Moldovan, V. Yamakov, D. Wolf, S.R. Phillpot, H. Gleiter, Stress-enhanced grain growth in a nanocrystalline material by molecular-dynamics simulation. Acta Mater. 51, 2097–2112 (2003)

    Article  CAS  Google Scholar 

  34. J.D. Rittner, D.N. Seidman, K.L. Merkle, Grain-boundary dissociation by the emission of stacking faults. Phys. Rev. B 53, 4241–4244 (1996)

    Article  Google Scholar 

  35. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)

    Article  CAS  Google Scholar 

  36. G. Grochola, S.P. Russo, I.K. Snook, On fitting a gold embedded atom method potential using the force matching method. J. Chem. Phys. 123, 7983 (2005)

    Article  Google Scholar 

  37. S. Alexander, Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010)

    Article  Google Scholar 

Download references

Funding

The authors acknowledge the support of the National Natural Science Foundation of China (Grant Nos. 51771172, 52071284 and 11902289), and the computational support from the Beijing Super Cloud Computing Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haofei Zhou or Jiangwei Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Q., Huang, Q., Zhou, H. et al. Inclination-governed deformation of dislocation-type grain boundaries. Journal of Materials Research 36, 1306–1315 (2021). https://doi.org/10.1557/s43578-021-00191-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00191-9

Keywords

Navigation