Skip to main content
Log in

Development of high Bs Fe–Ni-based metal amorphous nanocomposite by optimization of glass-forming ability

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Thermocalc simulations identified compositions with good glass-forming ability (GFA) by locating minima in liquidus temperature, and solidification range in (Fe70 Ni30)x(B-Si-Nb)100-x alloys with x = 82% and x = 85%, increased compared to previously developed x = 80% alloys. 3 compositions in the x = 82% system and 1 in the x = 85% system were successfully cast as amorphous magnetic ribbon. Magnetic properties of as-cast alloys showed improvements in Curie temperature and saturation induction, especially for the 85% alloy. Crystallization behavior in the 85% alloy was determined to occur as a 2-step process. Annealing studies showed (Fe70Ni30)82Nb2Si0B16 and (Fe70Ni30)82Nb3Si0B15 alloys to exhibit low coercivity and high Bs with annealing. TEM results show significant crystallization in as-cast ribbon. The (Fe70Ni30)85Nb0.5Si0B14.5 alloy as-cast has small, uniformly distributed grains, allowing a useful nanocrystalline alloy to be produced as cast. Finally, the parameter ΔTxg, the temperature range in which the material can be thermomechanically processed, was in the range of 12–23 °C.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

Available upon request.

References

  1. P. Waide, C.U. Brunner, 2011. Energy-efficiency policy opportunities for electric motor-driven systems https://doi.org/10.1787/5kgg52gb9gjd-en

  2. A.M. Leary, P.R. Ohodnicki, M.E. Mchenry, Soft magnetic materials in high-frequency, high-power conversion applications. JOM. 64, 772–781 (2012). https://doi.org/10.1007/s11837-012-0350-0

    Article  Google Scholar 

  3. N. Aronhime, V. DeGeorge, V. Keylin, P. Ohodnicki, M.E. McHenry, The effects of strain-annealing on tuning permeability and lowering losses in Fe-Ni-based metal amorphous nanocomposites. JOM. 69, 2164–2170 (2017). https://doi.org/10.1007/s11837-017-2480-x

    Article  CAS  Google Scholar 

  4. M.E. McHenry, D.E. Laughlin, Magnetic Properties of Metals and Alloys, in: Phys. Metall. Fifth Ed., Elsevier B.V., 2014: pp. 1881–2008. https://doi.org/10.1016/B978-0-444-53770-6.00019-8.

  5. I. Škorvánek, R. Gerling, The influence of neutron irradiation on the soft magnetic and mechanical properties of amorphous and nanocrystalline Fe73.5Cu1Nb3Si13.5B9 alloys. J. Appl. Phys. 72, 3417–3422 (1992). https://doi.org/10.1063/1.351414

    Article  Google Scholar 

  6. M.A. Willard, F. Johnson, J.H. Claassen, R.M. Stroud, M.E. McHenry, V.G. Harris, Soft magnetic nanocrystalline alloys for high temperature applications. Mater. Trans. 43, 2000–2005 (2002). https://doi.org/10.2320/matertrans.43.2000

    Article  CAS  Google Scholar 

  7. A.M. Leary, V. Keylin, P.R. Ohodnicki, M.E. McHenry, Stress induced anisotropy in CoFeMn soft magnetic nanocomposites. J. Appl. Phys. 117, 1–5 (2015). https://doi.org/10.1063/1.4919230

    Article  CAS  Google Scholar 

  8. T.M. Heil, K.J. Wahl, A.C. Lewis, J.D. Mattison, M.A. Willard, Nanocrystalline soft magnetic ribbons with high relative strain at fracture. Appl. Phys. Lett. (2007). https://doi.org/10.1063/1.2742598

    Article  Google Scholar 

  9. M. Kurniawan, V. Keylin, M.E. McHenry, Effect of alloy substituents on soft magnetic properties and economics of Fe-based and Co-based alloys. J. Mater. Res. 30, 2231–2237 (2015). https://doi.org/10.1557/jmr.2015.197

    Article  CAS  Google Scholar 

  10. M. Kurniawan, V. Keylin, M.E. McHenry, Alloy substituents for cost reduction in soft magnetic materials. J. Mater. Res. 30, 1072–1077 (2015). https://doi.org/10.1557/jmr.2015.56

    Article  CAS  Google Scholar 

  11. N. Aronhime, E. Zoghlin, V. Keylin, X. Jin, P. Ohodnicki, M.E. McHenry, Magnetic properties and crystallization kinetics of (Fe100−xNix)80Nb4Si2B14 metal amorphous nanocomposites. Scr. Mater. 142, 133–137 (2018). https://doi.org/10.1016/j.scriptamat.2017.08.043

    Article  CAS  Google Scholar 

  12. J.M. Silveyra, A. Leary, V. DeGeorge, S. Simizu, M.E. McHenry, High speed electric motors based on high performance novel soft magnets. J. Appl. Phys. 115, 17A319 (2014). https://doi.org/10.1063/1.4864247

    Article  CAS  Google Scholar 

  13. J.M. Silveyra, P. Xu, V. Keylin, V. DeGeorge, A. Leary, M.E. McHenry, Amorphous and nanocomposite materials for energy-efficient electric motors. J. Electron. Mater. 45, 219–225 (2015). https://doi.org/10.1007/s11664-015-3968-1

    Article  CAS  Google Scholar 

  14. A. Urata, H. Matsumoto, S. Sato, A. Makino, High Bs nanocrystalline alloys with high amorphous-forming ability. J. Appl. Phys. 105, 2007–2010 (2009). https://doi.org/10.1063/1.3072373

    Article  CAS  Google Scholar 

  15. C. Wang, A. He, A. Wang, J. Pang, X. Liang, Q. Li, C. Chang, K. Qiu, X. Wang, Effect of P on glass forming ability, magnetic properties and oxidation behavior of FeSiBP amorphous alloys. Intermetallics 84, 142–147 (2017). https://doi.org/10.1016/j.intermet.2016.12.024

    Article  CAS  Google Scholar 

  16. A. Wang, C. Zhao, A. He, H. Men, C. Chang, X. Wang, Composition design of high Bs Fe-based amorphous alloys with good amorphous-forming ability. J. Alloys Compd. 656, 729–734 (2016). https://doi.org/10.1016/j.jallcom.2015.09.216

    Article  CAS  Google Scholar 

  17. T. Liu, A. Wang, C. Zhao, S. Yue, X. Wang, C.T. Liu, Compositional design and crystallization mechanism of high Bs nanocrystalline alloys. Mater. Res. Bull. 112, 323–330 (2019). https://doi.org/10.1016/j.materresbull.2019.01.007

    Article  CAS  Google Scholar 

  18. J. Xu, Y.Z. Yang, W. Li, Z.W. Xie, X.C. Chen, Effect of the substitution of C for Si on microstructure, magnetic properties and bending ductility in high Fe content FeSiBCuPC alloy ribbons. J. Alloys Compd. 727, 610–615 (2017). https://doi.org/10.1016/j.jallcom.2017.08.181

    Article  CAS  Google Scholar 

  19. J. Xu, Y.Z. Yang, W. Li, X.C. Chen, Z.W. Xie, Effect of P addition on glass forming ability and soft magnetic properties of melt-spun FeSiBCuC alloy ribbons. J. Magn. Magn. Mater. 417, 291–293 (2016). https://doi.org/10.1016/j.jmmm.2016.05.103

    Article  CAS  Google Scholar 

  20. E. Dastanpour, M.H. Enayati, A. Masood, V. Ström, On the glass forming ability (GFA), crystallization behavior and soft magnetic properties of nanomet-substituted alloys. J. Non. Cryst. Solids. 529, 119774 (2020). https://doi.org/10.1016/j.jnoncrysol.2019.119774

    Article  CAS  Google Scholar 

  21. X.Y. Yan, Y.A. Chang, Y. Yang, F.Y. Xie, S.L. Chen, F. Zhang, S. Daniel, M.H. He, A thermodynamic approach for predicting the tendency of multicomponent metallic alloys for glass formation. Intermetallics 9, 535–538 (2001). https://doi.org/10.1016/S0966-9795(01)00036-X

    Article  CAS  Google Scholar 

  22. D. Ma, H. Cao, L. Ding, Y.A. Chang, K.C. Hsieh, Y. Pan, Bulkier glass formability enhanced by minor alloying additions. Appl. Phys. Lett. 87, 1–3 (2005). https://doi.org/10.1063/1.2115074

    Article  CAS  Google Scholar 

  23. H. Cao, D. Ma, K.C. Hsieh, L. Ding, W.G. Stratton, P.M. Voyles, Y. Pan, M. Cai, J.T. Dickinson, Y.A. Chang, Computational thermodynamics to identify Zr-Ti-Ni-Cu-Al alloys with high glass-forming ability. Acta Mater. 54, 2975–2982 (2006). https://doi.org/10.1016/j.actamat.2006.02.051

    Article  CAS  Google Scholar 

  24. F. Zhang, C. Zhang, D. Lv, J. Zhu, W. Cao, S. Chen, R. Schmid-Fetzer, Prediction of glass forming ability through high throughput calculation. J. Phase Equilib. Diffus. 39, 562–570 (2018). https://doi.org/10.1007/s11669-018-0643-2

    Article  CAS  Google Scholar 

  25. Y. Krimer, N. Aronhime, P. Ohodnicki, M.E. McHenry, Prediction of good glass forming ability in amorphous soft magnetic alloys by thermocalc simulation with experimental validation. J. Alloys Compd. 814, 152294 (2020). https://doi.org/10.1016/j.jallcom.2019.152294

    Article  CAS  Google Scholar 

  26. Z.P. Lu, C.T. Liu, A new glass-forming ability criterion for bulk metallic glasses. Acta Mater. 50, 3501–3512 (2002). https://doi.org/10.1016/S1359-6454(02)00166-0

    Article  CAS  Google Scholar 

  27. C.A. Schuh, T.C. Hufnagel, U. Ramamurty, Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067–4109 (2007). https://doi.org/10.1016/j.actamat.2007.01.052

    Article  CAS  Google Scholar 

  28. J. Lu, G. Ravichandran, W.L. Johnson, Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures. Acta Mater. 51, 3429–3443 (2003). https://doi.org/10.1016/S1359-6454(03)00164-2

    Article  CAS  Google Scholar 

  29. N.J. DeCristofaro, P.J. Stamatis, G.E. Fish, Bulk amorphous metal magnetic components for electric motors, US6462456 B1, 2002. https://doi.org/10.1016/j.(73).

  30. T. Fukao, A. Chiba, M. Matsui, Test results on a super-highspeed amorphous-iron reluctance motor. IEEE Trans. Ind. Appl. 25, 119–125 (1989). https://doi.org/10.1109/28.18881

    Article  Google Scholar 

  31. N. Nishiyama, K. Tanimoto, A. Makino, Outstanding efficiency in energy conversion for electric motors constructed by nanocrystalline soft magnetic alloy “nANOMET®” cores. AIP Adv. 6, 5 (2016). https://doi.org/10.1063/1.4944341

    Article  CAS  Google Scholar 

  32. T. Gheiratmand, H.R.M. Hosseini, Finemet nanocrystalline soft magnetic alloy: investigation of glass forming ability, crystallization mechanism, production techniques, magnetic softness and the effect of replacing the main constituents by other elements. J. Magn. Magn. Mater. 408, 177–192 (2016). https://doi.org/10.1016/j.jmmm.2016.02.057

    Article  CAS  Google Scholar 

  33. N. Aronhime, P. Ohodnicki, M.E. McHenry, Virtual bound states elements and their effects on magnetic and electrical properties of Fe-Ni based metal amorphous nanocomposites. Scr. Mater. 169, 9–13 (2019). https://doi.org/10.1016/j.scriptamat.2019.05.003

    Article  CAS  Google Scholar 

  34. P. Ohodnicki, E.J. Kautz, A. Devaraj, Y. Yu, N. Aronhime, Y. Krimer, M.E. Mchenry, A. Leary, Nanostructure and compositional segregation of soft magnetic FeNi-based nanocomposites with multiple nanocrystalline phases. J Mater Res (2020). https://doi.org/10.1557/jmr.2020.242

    Article  Google Scholar 

  35. Z. Li, R. Parsons, B. Zang, H. Kishimoto, T. Shoji, A. Kato, J. Karel, K. Suzuki, Dramatic grain refinement and magnetic softening induced by Ni addition in Fe[sbnd]B based nanocrystalline soft magnetic alloys. Scr. Mater. 181, 82–85 (2020). https://doi.org/10.1016/j.scriptamat.2020.02.020

    Article  CAS  Google Scholar 

  36. P.R. Ohodnicki, S.Y. Park, H.K. McWilliams, K. Ramos, D.E. Laughlin, M.E. McHenry, Phase evolution during crystallization of nanocomposite alloys with Co: Fe ratios in the two-phase region of the binary Fe-Co phase diagram. J. Appl. Phys. 101, 1–3 (2007). https://doi.org/10.1063/1.2711283

    Article  CAS  Google Scholar 

  37. J. Long, P.R. Ohodnicki, D.E. Laughlin, M.E. McHenry, T. Ohkubo, K. Hono, Structural studies of secondary crystallization products of the Fe23 B6 -type in a nanocrystalline FeCoB-based alloy. J. Appl. Phys. 101, 2007–2009 (2007). https://doi.org/10.1063/1.2714250

    Article  CAS  Google Scholar 

  38. P.R. Ohodnicki, N.C. Cates, D.E. Laughlin, M.E. McHenry, M. Widom, Ab initio theoretical study of magnetization and phase stability of the (Fe Co, Ni)23B6 and (Fe Co, Ni)23Zr6 structures of Cr23C6 and Mn23Th6 prototypes. Phys. Rev. B 78, 1–13 (2008). https://doi.org/10.1103/PhysRevB.78.144414

    Article  CAS  Google Scholar 

  39. T. Pradell, D. Crespo, N. Clavaguera, M.T. Clavaguera-Mora, Diffusion controlled grain growth in primary crystallization: Avrami exponents revisited. J. Phys. Condens. Matter. 10, 3833–3844 (1998). https://doi.org/10.1088/0953-8984/10/17/014

    Article  CAS  Google Scholar 

  40. R. Parsons, B. Zang, K. Onodera, H. Kishimoto, A. Kato, K. Suzuki, Soft magnetic properties of rapidly-annealed nanocrystalline Fe-Nb-B-(Cu) alloys. J. Alloys Compd. 723, 408–417 (2017). https://doi.org/10.1016/j.jallcom.2017.06.208

    Article  CAS  Google Scholar 

  41. K. Suzuki, R. Parsons, B. Zang, K. Onodera, H. Kishimoto, A. Kato, Copper-free nanocrystalline soft magnetic materials with high saturation magnetization comparable to that of Si steel. Appl. Phys. Lett. 110, 6–10 (2017). https://doi.org/10.1063/1.4973772

    Article  CAS  Google Scholar 

  42. K. Suzuki, R. Parsons, B. Zang, K. Onodera, H. Kishimoto, T. Shoji, A. Kato, Nano-crystallization of amorphous alloys by ultra-rapid annealing: an effective approach to magnetic softening. J. Alloys Compd. 735, 613–618 (2018). https://doi.org/10.1016/j.jallcom.2017.11.110

    Article  CAS  Google Scholar 

  43. S.J. Kernion, M.S. Lucas, J. Horwath, Z. Turgut, E. Michel, V. Keylin, J.F. Huth, A.M. Leary, S. Shen, M.E. McHenry, Reduced losses in rolled Fe73.5Si15.5Nb3B7Cu1 nanocrystalline ribbon. J. Appl. Phys. 113, 15–18 (2013). https://doi.org/10.1063/1.4794131

    Article  CAS  Google Scholar 

  44. Y. Takahara, H. Matsuda, Change in Magnetic Properties with Annealing of a Cold Rolled Amorphous Fe79B16Si5 Alloy. Mater. Trans. JIM. 35, 435–438 (1994)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under the Vehicle Technologies Program Office Award Number DE-EE0008870. This work was also supported by the DOE/EERE—Office of Advanced Manufacturing Program under Award DE-EE0007867. This work was additionally supported by Carpenter Technologies Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Krimer.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krimer, Y., Barberis, A. & McHenry, M.E. Development of high Bs Fe–Ni-based metal amorphous nanocomposite by optimization of glass-forming ability. Journal of Materials Research 36, 1666–1677 (2021). https://doi.org/10.1557/s43578-021-00183-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00183-9

Keywords

Navigation