Skip to main content
Log in

Scaling laws for nanoporous metals under uniaxial loading

  • Article
  • Focus Issue: Multiscale Materials Modeling of Interface-mediated Thermomechanical Behavior
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Significant attention in the literature is directed toward the development of scaling relations that relate the properties of nanoporous metals to bulk materials in order to help in their design. Although nanoporous gold has been under extensive study to develop the proper scaling relations, the literature still lacks a specific model that predicts its properties based on a combination of surface parameters, ligament size, and relative density. This work is part of the ongoing trials to introduce such scaling relations. Therefore, utilizing literature-reported results, the authors are proposing scaling relations that account for the coupling effect of surface area to solid volume ratio, ligament size, and relative density to predict the elastic modulus, yield stress, and ultimate stress under uniaxial loading. Moreover, a comparison between the proposed model and existing scaling laws in the literature is presented.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. A.M. Hodge, J. Biener, J.R. Hayes, P.M. Bythrow, C.A. Volkert, A.V. Hamza, Scaling equation for yield strength of nanoporous open-cell foams. Acta Mater. 55, 1343–1349 (2007). https://doi.org/10.1016/j.actamat.2006.09.038

    Article  CAS  Google Scholar 

  2. G. Pia, M. Carta, F. Delogu, Nanoporous Au foams: variation of effective Young’s modulus with ligament size. Scr. Mater. 144, 22–26 (2018). https://doi.org/10.1016/j.scriptamat.2017.09.038

    Article  CAS  Google Scholar 

  3. N.J. Briot, T. Kennerknecht, C. Eberl, T.J. Balk, Mechanical properties of bulk single crystalline nanoporous gold investigated by millimetre-scale tension and compression testing. Philos. Magn. 94, 847–866 (2014). https://doi.org/10.1080/14786435.2013.868944

    Article  CAS  Google Scholar 

  4. L.Z. Liu, H.J. Jin, Scaling equation for the elastic modulus of nanoporous gold with “fixed” network connectivity. Appl. Phys. Lett. (2017). https://doi.org/10.1063/1.4984108

    Article  Google Scholar 

  5. H.J. Jin, L. Kurmanaeva, J. Schmauch, H. Rösner, Y. Ivanisenko, J. Weissmüller, Deforming nanoporous metal: Role of lattice coherency. Acta Mater. 57, 2665–2672 (2009). https://doi.org/10.1016/j.actamat.2009.02.017

    Article  CAS  Google Scholar 

  6. J.F. Rodriguez-Nieva, C.J. Ruestes, Y. Tang, E.M. Bringa, Atomistic simulation of the mechanical properties of nanoporous gold. Acta Mater. 80, 67–76 (2014). https://doi.org/10.1016/j.actamat.2014.07.051

    Article  CAS  Google Scholar 

  7. C.J. Ruestes, D. Farkas, A. Caro, E.M. Bringa, Hardening under compression in Au foams. Acta Mater. 108, 1–7 (2016). https://doi.org/10.1016/j.actamat.2016.02.030

    Article  CAS  Google Scholar 

  8. B.N.D. Ngô, B. Roschning, K. Albe, J. Weissmüller, J. Markmann, On the origin of the anomalous compliance of dealloying-derived nanoporous gold. Scr. Mater. 130, 74–77 (2017). https://doi.org/10.1016/j.scriptamat.2016.11.006

    Article  Google Scholar 

  9. C.J. Ruestes, D. Schwen, E.N. Millán, E. Aparicio, E.M. Bringa, Mechanical properties of Au foams under nanoindentation. Comput. Mater. Sci. 147, 154–167 (2018). https://doi.org/10.1016/j.commatsci.2018.02.019

    Article  CAS  Google Scholar 

  10. D. Farkas, A. Caro, E. Bringa, D. Crowson, Mechanical response of nanoporous gold. Acta Mater. 61, 3249–3256 (2013). https://doi.org/10.1016/j.actamat.2013.02.013

    Article  CAS  Google Scholar 

  11. N. Huber, R.N. Viswanath, N. Mameka, J. Markmann, J. Weißmüller, Scaling laws of nanoporous metals under uniaxial compression. Acta Mater. 67, 252–265 (2014). https://doi.org/10.1016/j.actamat.2013.12.003

    Article  CAS  Google Scholar 

  12. B.N.D. Ngô, A. Stukowski, N. Mameka, J. Markmann, K. Albe, J. Weissmüller, Anomalous compliance and early yielding of nanoporous gold. Acta Mater. 93, 144–155 (2015). https://doi.org/10.1016/j.actamat.2015.04.021

    Article  CAS  Google Scholar 

  13. M. Bürckert, N.J. Briot, T.J. Balk, Uniaxial compression testing of bulk nanoporous gold. Philos. Magn. 97, 1157–1178 (2017). https://doi.org/10.1080/14786435.2017.1292060

    Article  CAS  Google Scholar 

  14. D. Lee, X. Wei, M. Zhao, X. Chen, S.C. Jun, J. Hone, J.W. Kysar, Plastic deformation in nanoscale gold single crystals and open-celled nanoporous gold. Model. Simul. Mater. Sci. Eng. (2007). https://doi.org/10.1088/0965-0393/15/1/S15

    Article  Google Scholar 

  15. B. Roschning, N. Huber, Scaling laws of nanoporous gold under uniaxial compression: effects of structural disorder on the solid fraction, elastic Poisson’s ratio, Young’s modulus and yield strength. J. Mech. Phys. Solids. 92, 55–71 (2016). https://doi.org/10.1016/j.jmps.2016.02.018

    Article  CAS  Google Scholar 

  16. L.J. Gibson, M.F. Ashby, Cellular solids. MRS Bull. 28, 429–450 (1997). https://doi.org/10.1557/mrs2003.79

    Article  Google Scholar 

  17. L.Z. Liu, X.L. Ye, H.J. Jin, Interpreting anomalous low-strength and low-stiffness of nanoporous gold: quantification of network connectivity. Acta Mater. 118, 77–87 (2016). https://doi.org/10.1016/j.actamat.2016.07.033

    Article  CAS  Google Scholar 

  18. C.A. Volkert, E.T. Lilleodden, D. Kramer, J. Weissmüller, Approaching the theoretical strength in nanoporous Au. Appl. Phys. Lett. 89, 10–13 (2006). https://doi.org/10.1063/1.2240109

    Article  CAS  Google Scholar 

  19. N. Beets, D. Farkas, S. Corcoran, Deformation mechanisms and scaling relations in the mechanical response of nano-porous Au. Acta Mater. 165, 626–637 (2019). https://doi.org/10.1016/j.actamat.2018.12.006

    Article  CAS  Google Scholar 

  20. K.R. Mangipudi, E. Epler, C.A. Volkert, Topology-dependent scaling laws for the stiffness and strength of nanoporous gold. Acta Mater. 119, 115–122 (2016). https://doi.org/10.1016/j.actamat.2016.08.012

    Article  CAS  Google Scholar 

  21. K. Hu, M. Ziehmer, K. Wang, E.T. Lilleodden, Nanoporous gold: 3D structural analyses of representative volumes and their implications on scaling relations of mechanical behaviour. Philos. Mag. 96, 3322–3335 (2016). https://doi.org/10.1080/14786435.2016.1222087

    Article  CAS  Google Scholar 

  22. R. Dou, B. Derby, Strain gradients and the strength of nanoporous gold. J. Mater. Res. 25, 746–753 (2010). https://doi.org/10.1557/JMR.2010.0099

    Article  CAS  Google Scholar 

  23. J. Biener, A.M. Hodge, A.V. Hamza, L.M. Hsiung, J.H. Satcher, Nanoporous Au: a high yield strength material. J. Appl. Phys. 97, 1–5 (2005). https://doi.org/10.1063/1.1832742

    Article  CAS  Google Scholar 

  24. J. Biener, A.M. Hodge, A.V. Hamza, Microscopic failure behavior of nanoporous gold. Appl. Phys. Lett. 87, 1–3 (2005). https://doi.org/10.1063/1.2051791

    Article  CAS  Google Scholar 

  25. N.J. Briot, T.J. Balk, Developing scaling relations for the yield strength of nanoporous gold. Philos. Mag. 95, 2955–2973 (2015). https://doi.org/10.1080/14786435.2015.1078512

    Article  CAS  Google Scholar 

  26. N. Mameka, K. Wang, J. Markmann, E.T. Lilleodden, J. Weissmüller, Nanoporous gold—testing macro-scale samples to probe small-scale mechanical behavior. Mater. Res. Lett. 4, 27–36 (2016). https://doi.org/10.1080/21663831.2015.1094679

    Article  Google Scholar 

  27. N. Badwe, X. Chen, K. Sieradzki, Mechanical properties of nanoporous gold in tension. Acta Mater. 129, 251–258 (2017). https://doi.org/10.1016/j.actamat.2017.02.040

    Article  CAS  Google Scholar 

  28. A. Giri, J. Tao, L. Wang, M. Kirca, A.C. To, Compressive behavior and deformation mechanism of nanoporous open-cell foam with ultrathin ligaments. J. Nanomech. Micromech. 4, A4013012 (2013). https://doi.org/10.1061/(asce)nm.2153-5477.0000079

    Article  Google Scholar 

  29. M.H. Saffarini, G.Z. Voyiadjis, C.J. Ruestes, M. Yaghoobi, Ligament size dependency of strain hardening and ductility in nanoporous gold. Comput. Mater. Sci. 186, 109920 (2020). https://doi.org/10.1016/j.commatsci.2020.109920

    Article  CAS  Google Scholar 

  30. J. Biener, A.M. Hodge, J.R. Hayes, C.A. Volkert, L.A. Zepeda-Ruiz, A.V. Hamza, F.F. Abraham, Size effects on the mechanical behavior of nanoporous Au. Nano Lett. 6, 2379–2382 (2006). https://doi.org/10.1021/nl061978i

    Article  CAS  Google Scholar 

  31. X.Y. Sun, G.K. Xu, X. Li, X.Q. Feng, H. Gao, Mechanical properties and scaling laws of nanoporous gold. J. Appl. Phys. (2013). https://doi.org/10.1063/1.4774246

    Article  Google Scholar 

  32. N. Mameka, J. Markmann, J. Weissmüller, On the impact of capillarity for strength at the nanoscale. Nat. Commun. 8, 1–9 (2017). https://doi.org/10.1038/s41467-017-01434-2

    Article  CAS  Google Scholar 

  33. R. Xia, X.Q. Feng, G.F. Wang, Effective elastic properties of nanoporous materials with hierarchical structure. Acta Mater. 59, 6801–6808 (2011). https://doi.org/10.1016/j.actamat.2011.07.039

    Article  CAS  Google Scholar 

  34. A. Stukowski, Computational analysis methods in atomistic modeling of crystals. JOM 66, 399–407 (2014). https://doi.org/10.1007/s11837-013-0827-5

    Article  CAS  Google Scholar 

  35. N. Mameka, J. Markmann, H.J. Jin, J. Weissmüller, Electrical stiffness modulation - confirming the impact of surface excess elasticity on the mechanics of nanomaterials. Acta Mater. 76, 272–280 (2014). https://doi.org/10.1016/j.actamat.2014.04.067

    Article  CAS  Google Scholar 

  36. R. Namakian, G.Z. Voyiadjis, P. Kwaśniak, On the slip and twinning mechanisms on first order pyramidal plane of magnesium: molecular dynamics simulations and first principal studies. Mater. Des. 191, 108648 (2020). https://doi.org/10.1016/j.matdes.2020.108648

    Article  CAS  Google Scholar 

  37. J. Lao, M. Naghdi Tam, D. Pinisetty, N. Gupta, Molecular dynamics simulation of FCC metallic nanowires: a review. JOM 65, 175–184 (2013). https://doi.org/10.1007/s11837-012-0465-3

    Article  CAS  Google Scholar 

  38. W. Liang, M. Zhou, Discovery, characterization and modelling of novel shape memory behaviour of fcc metal nanowires. Philos. Mag. 87, 2191–2220 (2007). https://doi.org/10.1080/14786430701280943

    Article  CAS  Google Scholar 

  39. D. Huang, Q. Zhang, P. Qiao, Molecular dynamics evaluation of strain rate and size effects on mechanical properties of FCC nickel nanowires. Comput. Mater. Sci. 50, 903–910 (2011). https://doi.org/10.1016/j.commatsci.2010.10.028

    Article  CAS  Google Scholar 

  40. Y.H. Wen, Z.Z. Zhu, R.Z. Zhu, Molecular dynamics study of the mechanical behavior of nickel nanowire: strain rate effects. Comput. Mater. Sci. 41, 553–560 (2008). https://doi.org/10.1016/j.commatsci.2007.05.012

    Article  CAS  Google Scholar 

  41. Z. Yang, Z. Lu, Y.P. Zhao, Atomistic simulation on size-dependent yield strength and defects evolution of metal nanowires. Comput. Mater. Sci. 46, 142–150 (2009). https://doi.org/10.1016/j.commatsci.2009.02.015

    Article  CAS  Google Scholar 

  42. H. Ikeda, Y. Qi, T. Çagin, K. Samwer, W.L. Johnson, W.A. Goddard, Strain rate induced amorphization in metallic nanowires. Phys. Rev. Lett. 82, 2900–2903 (1999). https://doi.org/10.1103/PhysRevLett.82.2900

    Article  CAS  Google Scholar 

  43. H.A. Wu, A.K. Soh, X.X. Wang, Z.H. Sun, Strength and Fracture of Single Crystal Metal Nanowire (Trans Tech Publications Ltd, Baech, 2004), pp. 33–38

    Google Scholar 

  44. R. Xia, C. Xu, W. Wu, X. Li, X.Q. Feng, Y. Ding, Microtensile tests of mechanical properties of nanoporous Au thin films. J. Mater. Sci. 44, 4728–4733 (2009). https://doi.org/10.1007/s10853-009-3731-1

    Article  CAS  Google Scholar 

  45. L. Lührs, C. Soyarslan, J. Markmann, S. Bargmann, J. Weissmüller, Elastic and plastic Poisson’s ratios of nanoporous gold. Scr. Mater. 110, 65–69 (2016). https://doi.org/10.1016/j.scriptamat.2015.08.002

    Article  CAS  Google Scholar 

  46. V.S. Deshpande, N.A. Fleck, Isotropic constitutive models for metallic foams, n.d. www.elsevier.com/locate/jmps (accessed August 13, 2020).

  47. G.Z. Voyiadjis, M. Yaghoobi, Size Effects in Plasticity: From Macro to Nano, 1st edn. (Elsevier, Amsterdam, 2019).

    Google Scholar 

  48. G.Z. Voyiadjis, R.K.A. Al-Rub, Gradient plasticity theory with a variable length scale parameter. Int. J. Solids Struct. 42, 3998–4029 (2005). https://doi.org/10.1016/j.ijsolstr.2004.12.010

    Article  Google Scholar 

  49. G.Z. Voyiadjis, D. Faghihi, Gradient plasticity for thermo-mechanical processes in metals with length and time scales. Philos. Mag. 93, 1013–1053 (2013). https://doi.org/10.1080/14786435.2012.740576

    Article  CAS  Google Scholar 

  50. G.Z. Voyiadjis, B. Deliktas, Modeling of Strengthening and Softening in Inelastic Nanocrystalline Materials with Reference to the Triple Junction and Grain Boundaries Using Strain Gradient Plasticity (Springer, New York, 2010), pp. 3–26

    Google Scholar 

  51. K.R. Mangipudi, E. Epler, C.A. Volkert, On the multiaxial yielding and hardness to yield stress relation of nanoporous gold. Scr. Mater. 146, 150–153 (2018). https://doi.org/10.1016/j.scriptamat.2017.11.033

    Article  CAS  Google Scholar 

  52. Y.C. Kim, E.J. Gwak, S. Min Ahn, J. Il Jang, H.N. Han, J.Y. Kim, Indentation size effect in nanoporous gold. Acta Mater. 138, 52–60 (2017). https://doi.org/10.1016/j.actamat.2017.07.040

    Article  CAS  Google Scholar 

  53. L. Lührs, B. Zandersons, N. Huber, J. Weissmüller, Plastic Poisson’s ratio of nanoporous metals: a macroscopic signature of tension-compression asymmetry at the nanoscale. Nano Lett. 17, 6258–6266 (2017). https://doi.org/10.1021/acs.nanolett.7b02950

    Article  CAS  Google Scholar 

  54. A. Leitner, V. Maier-Kiener, J. Jeong, M.D. Abad, P. Hosemann, S.H. Oh, D. Kiener, Interface dominated mechanical properties of ultra-fine grained and nanoporous Au at elevated temperatures. Acta Mater. 121, 104–116 (2016). https://doi.org/10.1016/j.actamat.2016.08.071

    Article  CAS  Google Scholar 

Download references

Acknowledgments

G.Z.V. acknowledges the financial support provided by a grant from the National Science Foundation EPSCoR CIMM (Grant Number #OIA-1541079). C.J.R. thanks SiiP-UNCuyo Grant and ANPCyT PICT funding.

Author information

Authors and Affiliations

Authors

Contributions

MHS: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Data Curation, Writing—Original Draft, Writing—Review & Editing, and Visualization. GZV: Resources, Writing—Review & Editing, Visualization, Supervision, Project administration, and Funding acquisition. CJR: Validation, Formal analysis, Writing—Review & Editing, and Visualization.

Corresponding author

Correspondence to George Z. Voyiadjis.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saffarini, M.H., Voyiadjis, G.Z. & Ruestes, C.J. Scaling laws for nanoporous metals under uniaxial loading. Journal of Materials Research 36, 2729–2741 (2021). https://doi.org/10.1557/s43578-021-00161-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00161-1

Keywords

Navigation