Skip to main content
Log in

Degradable magnesium implants: improving bioactive and antibacterial performance by designed hybrid coatings

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Magnesium and its alloys are promising material candidates for degradable fracture fixation devices due to their suitable mechanical properties and biocompatibility; however, their fast corrosion in aqueous media causes pain and swelling. In this study, a hybrid coating system composed by a sol–gel silica-based matrix with bioactive glass microparticles and silica–gentamicin nanoparticles was deposited by spray technology on magnesium AZ91D alloy. The coating was homogeneously distributed on the surface and protected the degradation of AZ91D alloy in simulated body fluid for at least 28 days, preventing the pH increase of the solution and accelerating the formation of calcium phosphate-related compounds on the surface. Moreover, inhibition of bacteria growth was proved for Staphylococcus aureus and Escherichia coli and increased cell adhesion and proliferation of ST-2 and differentiated MC3T3-E1 cells was shown. The generated coating is a promising surface treatment for providing bioactive and antibacterial proprieties to new degradable implants.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. M.S. Song, R.C. Zeng, Y.F. Ding, R.W. Li, M. Easton, I. Cole, N. Birbilis, X.B. Chen, Recent advances in biodegradation controls over Mg alloys for bone fracture management: a review. J. Mater. Sci. Technol. 35, 535 (2019)

    Article  Google Scholar 

  2. M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27(9), 1728 (2006)

    Article  CAS  Google Scholar 

  3. G. Song, Control of biodegradation of biocompatable magnesium alloys. Corros. Sci. 49(4), 1696 (2007)

    Article  CAS  Google Scholar 

  4. H. Hornberger, S. Virtanen, A.R. Boccaccini, Acta Biomater. 8, 2442 (2012)

    Article  CAS  Google Scholar 

  5. Y. Xiong, X. Hu, R. Song, Characteristics of CeO2/ZrO2-HA composite coating on ZK60 magnesium alloy. J. Mater. Res. 32(6), 1073 (2017)

    Article  CAS  Google Scholar 

  6. P. Sikder, Y. Ren, S.B. Bhaduri, Synthesis and evaluation of protective poly(lactic acid) and fluorine-doped hydroxyapatite-based composite coatings on AZ31 magnesium alloy. J. Mater. Res. 34(22), 3766 (2019)

    Article  CAS  Google Scholar 

  7. W. Jin, G. Wang, Z. Lin, H. Feng, W. Li, X. Peng, Corrosion Resistance and Cytocompatibility of Tantalum-Surface-Functionalized Biomedical ZK60 Mg Alloy (Elsevier, Amsterdam, 2017).

    Book  Google Scholar 

  8. W. Cao, L.L. Hench, Bioactive materials. Ceram. Int. 22(6), 493 (1996)

    Article  CAS  Google Scholar 

  9. S. Omar, Y. Castro, J. Ballarre, W. Schreiner, A. Duran, S. Cere, Magnesium alloys implants coated with 58S sol gel bioactive glass to retard first stage corrosion. Corrosion 73(12), 1448 (2017)

    Article  CAS  Google Scholar 

  10. S. Heise, M. Höhlinger, Y.T. Hernández, J.J.P. Palacio, J.A.R. Ortiz, V. Wagener, S. Virtanen, A.R. Boccaccini, Electrophoretic deposition and characterization of chitosan/bioactive glass composite coatings on Mg alloy substrates. Electrochim. Acta 232, 456 (2017)

    Article  CAS  Google Scholar 

  11. J. Ballarre, T. Aydemir, L. Liverani, J.A. Roether, W.H. Goldmann, A.R. Boccaccini, Versatile bioactive and antibacterial coating system based on silica, gentamicin, and chitosan: improving early stage performance of titanium implants. Surf. Coat. Technol. 381, 125138 (2020)

    Article  CAS  Google Scholar 

  12. P. Mathur, D. Apelian, A. Lawley, Analysis of the spray deposition process. Acta Metall. 37(2), 429 (1989)

    Article  CAS  Google Scholar 

  13. S.A. Omar, A. Bouchet, S. Pellice, V. Ballarín, S.M. Ceré, J. Ballarre, J.I. Pastore, Optimization of new spray technique for hybrid sol-gel coatings for biotechnological purposes: preliminary deposition study. IFMBE Proc. 49, 445 (2015)

    Article  Google Scholar 

  14. J. Gallo, M. Holinka, C. Moucha, Antibacterial surface treatment for orthopaedic implants. Int. J. Mol. Sci. 15(8), 13849 (2014)

    Article  CAS  Google Scholar 

  15. B. Zmistowski, J.A. Karam, J.B. Durinka, D.S. Casper, J. Parvizi, Periprosthetic joint infection increases the risk of one-year mortality. J. Bone Jt. Surg. Am. 95(24), 2177 (2013)

    Article  Google Scholar 

  16. W. Xiao, S.H. Luo, X.J. Wei, C.Q. Zhang, W.H. Huang, J.K. Chen, Y. Cai, Y. Rui, M.N. Rahaman, Evaluation of Ti implants coated with Ag-containing borate bioactive glass for simultaneous eradication of infection and fracture fixation in a rabbit tibial model. J. Mater. Res. 27(24), 3147–3156 (2012)

    Article  CAS  Google Scholar 

  17. J. Wang, G. Wu, X. Liu, G. Sun, D. Li, H. Wei, A decomposable silica-based antibacterial coating for percutaneous titanium implant. Int. J. Nanomed. 12, 371 (2017)

    Article  CAS  Google Scholar 

  18. K.L. Menzies, L. Jones, The impact of contact angle on the biocompatibility of biomaterials. Optom. Vis. Sci. 87, 387 (2010)

    Article  Google Scholar 

  19. J.H. Lee, G. Khang, J.W. Lee, H.B. Lee, Interaction of different types of cells on polymer surfaces with wettability gradient. J. Colloid Interface Sci. 205(2), 323 (1998)

    Article  CAS  Google Scholar 

  20. O. Bretcanu, X. Chatzistavrou, K. Paraskevopoulos, R. Conradt, I. Thompson, A.R. Boccaccini, Sintering and crystallisation of 45S5 Bioglass® powder. J. Eur. Ceram. Soc. 29(16), 3299 (2009)

    Article  CAS  Google Scholar 

  21. J. Ballarre, D.A. López, W.H. Schreiner, A. Durán, S.M. Ceré, Protective hybrid sol-gel coatings containing bioactive particles on surgical grade stainless steel: surface characterization. Appl. Surf. Sci. 253(17), 7260 (2007)

    Article  CAS  Google Scholar 

  22. I. Cacciotti, F. Nanni, V. Campaniello, F.R. Lamastra, Development of a transparent hydrorepellent modified SiO2 coatings for glazed sanitarywares. Mater. Chem. Phys. 146(3), 240 (2014)

    Article  CAS  Google Scholar 

  23. R.S. Dubey, R.D. Rajesh, M.A. More, Mater. Today Proc. 2, 3575–3579 (2015)

    Article  CAS  Google Scholar 

  24. R. Wetzel, D.S. Brauer, Apatite formation of substituted Bioglass 45S5: SBF vs Tris. Mater. Lett. 257, 126760 (2019)

    Article  CAS  Google Scholar 

  25. E.K.K. Baldin, C.F. Malfatti, V. Rodói, R.N. Brandalise, Effect of sterilization on the properties of a bioactive hybrid coating containing hydroxyapatite. Adv. Mater. Sci. Eng. 2019, 8593193 (2019)

    Article  CAS  Google Scholar 

  26. O. Peitl, E. Dutra Zanotto, L.L. Hench, Highly bioactive P2O5-Na2O-CaO–SiO2glass-ceramics. J. Non. Cryst. Solids 292(1–3), 115 (2001)

    Article  CAS  Google Scholar 

  27. P. Sepulveda, J.R. Jones, L.L. Hench, Characterization of melt-derived 45S5 and sol-gel-derived 58S bioactive glasses. J. Biomed. Mater. Res. 58(6), 734 (2001)

    Article  CAS  Google Scholar 

  28. T. Kokubo, S. Ito, Z.T. Huang, T. Hayashi, S. Sakka, T. Kitsugi, T. Yamamuro, Ca, P-rich layer formed on high-strength bioactive glass-ceramic A-W. J. Biomed. Mater. Res. 24(3), 331 (1990)

    Article  CAS  Google Scholar 

  29. G.L. Makar, J. Kruger, Corrosion of magnesium. Int. Mater. Rev. 38, 138 (1993)

    Article  CAS  Google Scholar 

  30. Y. Wang, M. Wei, J. Hu, G. Jinzhu, Y. Zhang, Corrosion process of pure magnesium in simulated body fluid. Mater. Lett. 62, 2181 (2008)

    Article  CAS  Google Scholar 

  31. G.S. Alvarez, C. Hélary, A.M. Mebert, X. Wang, T. Coradin, M.F. Desimone, Antibiotic-loaded silica nanoparticle-collagen composite hydrogels with prolonged antimicrobial activity for wound infection prevention. J. Mater. Chem. B 2(29), 4660 (2014)

    Article  CAS  Google Scholar 

  32. E.M. Hetrick, M.H. Schoenfisch, Chem. Soc. Rev. 35, 780 (2006)

    Article  CAS  Google Scholar 

  33. K. Brooks, R. Ahn, M.E. Tobias, L.A. Hansen, N.R. Luke-Marshall, L. Wild, A.A. Campagnari, M.T. Ehrensberger, Magnesium alloy AZ91 exhibits antimicrobial properties in vitro but not in vivo. J. Biomed. Mater. Res. B 106(1), 221 (2018)

    Article  CAS  Google Scholar 

  34. E. Otsuka, A. Yamaguchi, S. Hirose, H. Hagiwara, Characterization of osteoblastic differentiation of stromal cell line ST2 that is induced by ascorbic acid. Am. J. Physiol. Cell Physiol. 277, 132–138 (1999)

    Article  Google Scholar 

  35. R.C. Pereira, A.M. Delany, E. Canalis, Effects of cortisol and bone morphogenetic protein-2 on stromal cell differentiation: Correlation with CCAAT-enhancer binding protein expression. Bone 30(5), 685 (2002)

    Article  CAS  Google Scholar 

  36. J.C. Robins, N. Akeno, A. Mukherjee, R.R. Dalal, B.J. Aronow, P. Koopman, T.L. Clemens, Hypoxia induces chondrocyte-specific gene expression in mesenchymal cells in association with transcriptional activation of Sox9. Bone 37(3), 313 (2005)

    Article  CAS  Google Scholar 

  37. O. Suzuki, S. Kamakura, T. Katagiri, M. Nakamura, B. Zhao, Y. Honda, R. Kamijo, Bone formation enhanced by implanted octacalcium phosphate involving conversion into Ca-deficient hydroxyapatite. Biomaterials 27(13), 2671 (2006)

    Article  CAS  Google Scholar 

  38. R. Detsch, I. Dieser, U. Deisinger, F. Uhl, S. Hamisch, G. Ziegler, G. Lipps, Biofunctionalization of dispense-plotted hydroxyapatite scaffolds with peptides: quantification and cellular response. J. Biomed. Mater. Res. Part A 92(2), 493 (2009)

    Google Scholar 

  39. L. Liverani, E. Boccardi, A.M. Beltrán, A. Boccaccini, Incorporation of calcium containing mesoporous (MCM-41-type) particles in electrospun PCL fibers by using benign solvents. Polymers 9, 487 (2017)

    Article  CAS  Google Scholar 

  40. A.F. Cipriano, J. Lin, C. Miller, A. Lin, M.C.C. Alcaraz, P. Soria, H. Liu, Anodization of magnesium for biomedical applications: processing, characterization, degradation and cytocompatibility. Acta Biomater. 62, 397 (2017)

    Article  CAS  Google Scholar 

  41. S. Keim, J.G. Brunner, B. Fabry, S. Virtanen, Control of magnesium corrosion and biocompatibility with biomimetic coatings. J. Biomed. Mater. Res. B 96(1), 84 (2011)

    Article  CAS  Google Scholar 

  42. C. Lorenz, J.G. Brunner, P. Kollmannsberger, L. Jaafar, B. Fabry, S. Virtanen, Effect of surface pre-treatments on biocompatibility of magnesium. Acta Biomater. 5(7), 2783 (2009)

    Article  CAS  Google Scholar 

  43. P. Ducheyne, Q. Qiu, Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials 20(23–24), 2287 (1999)

    Article  CAS  Google Scholar 

  44. N. Liu, M. Tang, Toxic effects and involved molecular pathways of nanoparticles on cells and subcellular organelles. J. Appl. Toxicol. 40(1), 16 (2019)

    Article  CAS  Google Scholar 

  45. P. Ariano, P. Zamburlin, A. Gilardino, R. Mortera, B. Onida, M. Tomatis, M. Ghiazza, B. Fubini, D. Lovisolo, Interaction of spherical silica nanoparticles with neuronal cells: size-dependent toxicity and perturbation of calcium homeostasis. Small 7(6), 766 (2011)

    Article  CAS  Google Scholar 

  46. M.L. Azi, A.A.D.A. Teixeira, R.B. Cotias, A. Joeris, M. Kfuri, Membrane induced osteogenesis in the management of posttraumatic bone defects. J. Orthop. Trauma 30(10), 545 (2016)

    Article  Google Scholar 

  47. G. Jell, M.M. Stevens, Gene activation by bioactive glasses. J. Mater. Sci. Mater. Med. 17(11), 997 (2006)

    Article  CAS  Google Scholar 

  48. L.D. Quarles, D.A. Yohay, L.W. Lever, R. Caton, R.J. Wenstrup, Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: an in vitro model of osteoblast development. J. Bone Miner. Res. 7, 683 (1992)

    Article  CAS  Google Scholar 

  49. J.P. St-Pierre, M. Gauthier, L.P. Lefebvre, M. Tabrizian, Three-dimensional growth of differentiating MC3T3-E1 pre-osteoblasts on porous titanium scaffolds. Biomaterials 26, 7319 (2005)

    Article  CAS  Google Scholar 

  50. S. Hattar, A. Berdal, A. Asselin, S. Loty, D.C. Greenspan, J.M. Sautier, Behaviour of moderately differentiated osteoblast-like cells cultured in contact with bioactive glasses. Eur. Cell Mater. 4, 61 (2002)

    Article  CAS  Google Scholar 

  51. M. Shi, Y. Zhou, J. Shao, Z. Chen, B. Song, J. Chang, C. Wu, Y. Xiao, Stimulation of osteogenesis and angiogenesis of hBMSCs by delivering Si ions and functional drug from mesoporous silica nanospheres. Acta Biomater. 21, 178 (2015)

    Article  CAS  Google Scholar 

  52. C. Graf, Q. Gao, I. Schütz, C.N. Noufele, W. Ruan, U. Posselt, E. Korotianskiy, D. Nordmeyer, F. Rancan, S. Hadam, A. Vogt, J. Lademann, V. Haucke, E. Rühl, Surface functionalization of silica nanoparticles supports colloidal stability in physiological media and facilitates internalization in cells. Langmuir 28(20), 7598 (2012)

    Article  CAS  Google Scholar 

  53. Y. Castro, A. Durán, Control of degradation rate of Mg alloys using silica sol–gel coatingsfor biodegradable implant materials. J. Sol-Gel Sci. Technol. 90, 198 (2019)

    Article  CAS  Google Scholar 

  54. C.K. Yuen, W.Y. Ip, Theoretical risk assessment of magnesium alloys as degradable biomedical implants. Acta Biomater. 6, 1808 (2010)

    Article  CAS  Google Scholar 

  55. J. Ballarre, P. Desimone, M. Chorro, M. Baca, Bone quality around bioactive silica-based coated stainless steel implants: analysis by Micro-Raman XRF and XAS techniques. J. Struct. 184, 164 (2013)

    CAS  Google Scholar 

  56. W. Stöber, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26(1), 62 (1968)

    Article  Google Scholar 

  57. P. Zhao, H. Liu, H. Deng, L. Xiao, C. Qin, Y. Du, X. Shi, A study of chitosan hydrogel with embedded mesoporous silica nanoparticles loaded by ibuprofen as a dual stimuli-responsive drug release system for surface coating of titanium implants. Colloids Surf. B 123, 657 (2014)

    Article  CAS  Google Scholar 

  58. A.M. Mebert, C. Aimé, G.S. Alvarez, Y. Shi, S.A. Flor, S.E. Lucangioli, M.F. Desimone, T. Coradin, Silica core-shell particles for the dual delivery of gentamicin and rifamycin antibiotics. J. Mater. Chem. B 4(18), 3135 (2016)

    Article  CAS  Google Scholar 

  59. B.E. Rosenkrantz, J.R. Greco, J.G. Hoogerheide, E.M. Oden, Gentamicin sulfate. Anal. Profiles Drug Subst. Excipients 9, 295 (1981)

    Google Scholar 

  60. W.A. Rutala, D.J. Weber. Guideline for disinfection and sterilization in healthcare facilities. 1 (2008)

  61. T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15), 2907 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank L. Liverani and A. Grünewald (FAU Institute of Biomaterials) for the grateful help in cell culture assays and technical support, J. Bohlen from MagIC—Magnesium Innovations Center for the AZ91D supply, D. Colombo for the roughness measurements and YPF Technology-Analytical lab (Karina Irvicelli and Ines Loyza) for the XRD measurements. J. Ballarre and J. Merlo thank the Alexander von Humboldt Foundation for the Renewal of the Georg Forster Fellowship for experienced researchers and the associated Junior Research Fellowship, respectively. J. Merlo and J. Ballarre also thank the support of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aldo R. Boccaccini or Josefina Ballarre.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 62 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merlo, J.L., Detsch, R., Ceré, S. et al. Degradable magnesium implants: improving bioactive and antibacterial performance by designed hybrid coatings. Journal of Materials Research 36, 443–458 (2021). https://doi.org/10.1557/s43578-020-00099-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-020-00099-w

Keywords

Navigation