Skip to main content
Log in

Poly(lactic acid) polymers containing silver and titanium dioxide nanoparticles to be used as scaffolds for bioengineering

  • Article
  • Biomaterials
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The use of systems based on biodegradable polymers and nanoparticles has shown to be promising to bone tissue engineering. The combination of these materials aims to obtain systems with biological and mechanical suitable properties. The objective of the present paper was to obtain systems composed of polylactide with silver and titanium oxide nanoparticles alone and in binary systems. The systems obtained were characterized by infrared with Fourier transform, X-ray diffraction, thermogravimetric analysis, differentiated scanning calorimetry, relaxometry, cytotoxicity in L929 fibroblast, nanoindentation, wettability, and calcium and phosphate deposition. The titanium nanoparticles did not have a strong influence on the material's crystallinity. On the other hand, the silver nanoparticles acted as a nucleating agent in its lowest concentration, but it led to a decrease in crystallinity in the highest concentrations. The nanoparticles provoked antagonistic effects on the wettability: titanium caused a decrease, while silver led to an increase. The effect generated by silver was predominant in the binary systems. The cell viability test confirmed that all systems obtained are biocompatible. At large, the two particles' application simultaneously produced an increase in the deposition of phosphate calcium and in the nanohardness.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. M. Sadat-Shojai, M.-T. Khorasani, A. Jamshidi, A new strategy for fabrication of bone scaffolds using electrospun nano-HAp/PHB fibers and protein hydrogels. Chem. Eng. J. 289, 38 (2016)

    Article  CAS  Google Scholar 

  2. L. Roseti, V. Parisi, M. Petretta, C. Cavallo, G. Desando, I. Bartolotti, B. Grigolo, Scaffolds for bone tissue engineering: state of the art and new perspectives. Mater. Sci. Eng. C 78, 1246 (2017)

    Article  CAS  Google Scholar 

  3. R.C. de Azevedo Gonçalves Mota, E.O. da Silva, L.R. de Menezes, Polymer nanocomposites used as scaffolds for bone tissue regeneration. MSA 9, 679 (2018)

    Article  CAS  Google Scholar 

  4. L. Zhu, D. Luo, Y. Liu, Effect of the nano/microscale structure of biomaterial scaffolds on bone regeneration. Int J Oral Sci 12(1), 6 (2020)

    Article  CAS  Google Scholar 

  5. B.E. Grottkau, Z. Hui, Y. Yao, Y. Pang, Rapid fabrication of anatomically-shaped bone scaffolds using indirect 3D printing and perfusion techniques. IJMS 21(1), 315 (2020)

    Article  CAS  Google Scholar 

  6. K. Baskar, T. Anusuya, G. Devanand Venkatasubbu, Mechanistic investigation on microbial toxicity of nano hydroxyapatite on implant associated pathogens. Mater. Sci. Eng. C 73, 8 (2017)

    Article  CAS  Google Scholar 

  7. J. Prakash, D. Prema, K.S. Venkataprasanna, K. Balagangadharan, N. Selvamurugan, G.D. Venkatasubbu, Nanocomposite chitosan film containing graphene oxide/hydroxyapatite/gold for bone tissue engineering. Int. J. Biol. Macromol. 154, 62 (2020)

    Article  CAS  Google Scholar 

  8. C. Zhou, Q. Shi, W. Guo, L. Terrell, A.T. Qureshi, D.J. Hayes, Q. Wu, Electrospun Bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA. ACS Appl. Mater. Interfaces 5(9), 3847 (2013)

    Article  CAS  Google Scholar 

  9. K. Madhavan Nampoothiri, N.R. Nair, R.P. John, An overview of the recent developments in polylactide (PLA) research. Bioresour. Technol. 101(22), 8493 (2010)

    Article  CAS  Google Scholar 

  10. R. Auras, B. Harte, S. Selke, An overview of polylactides as packaging materials. Macromol. Biosci. 4(9), 835 (2004)

    Article  CAS  Google Scholar 

  11. F. Carrasco, P. Pagès, J. Gámez-Pérez, O.O. Santana, M.L. Maspoch, Processing of poly(lactic acid): characterization of chemical structure, thermal stability and mechanical properties. Polym. Degrad. Stab. 95(2), 116 (2010)

    Article  CAS  Google Scholar 

  12. H. Lin, D. Zhang, P.G. Alexander, G. Yang, J. Tan, A.W.-M. Cheng, R.S. Tuan, Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture. Biomaterials 34(2), 331 (2013)

    Article  CAS  Google Scholar 

  13. J. Lunt, Large-scale production, properties and commercial applications of polylactic acid polymers. Polym. Degrad. Stab. 59(1–3), 145 (1998)

    Article  CAS  Google Scholar 

  14. Y. Haldorai, J.-J. Shim, Novel chitosan-TiO2 nanohybrid: Preparation, characterization, antibacterial, and photocatalytic properties. Polym. Compos 35(2), 327 (2013)

    Article  CAS  Google Scholar 

  15. A. Shebi, S. Lisa, Evaluation of biocompatibility and bactericidal activity of hierarchically porous PLA-TiO2 nanocomposite films fabricated by breath-figure method. Mater. Chem. Phys. 230, 308 (2019)

    Article  CAS  Google Scholar 

  16. J. Boateng, O. Catanzano, Therapeutic Dressings and Wound Healing Applications (Wiley, New York, 2020).

    Book  Google Scholar 

  17. E. Galea, U. Shankar, A.B. Surgeon, The use of a non-adherent lipido-colloid dressings with silver in the management of wounds. Wounds 6(2), 467–471 (2019)

    Google Scholar 

  18. P.L. Drake, K.J. Hazelwood, Exposure-related health effects of silver and silver compounds: a review. Ann. Occup. Hyg. 49(7), 575–585 (2005)

    CAS  Google Scholar 

  19. R. Foldbjerg, P. Olesen, M. Hougaard, D.A. Dang, H.J. Hoffmann, H. Autrup, PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol. Lett. 190(2), 156 (2009)

    Article  CAS  Google Scholar 

  20. P. Gunatillake, R. Mayadunne, R. Adhikari, Biotechnology Annual Review (Elsevier, New York, 2006), pp. 301–347

    Google Scholar 

  21. S. Shankar, J.-W. Rhim, K. Won, Preparation of poly(lactide)/lignin/silver nanoparticles composite films with UV light barrier and antibacterial properties. Int. J. Biol. Macromol. 107, 1724 (2018)

    Article  CAS  Google Scholar 

  22. A. Paul, E. Kaverina, A. Vasiliev, Synthesis of silver/polymer nanocomposites by surface coating using carbodiimide method. Colloids Surf. A 482, 44 (2015)

    Article  CAS  Google Scholar 

  23. G.S. Medeiros, P.A.R. Muñoz, C.F.P. de Oliveira, L.C.E. da Silva, R. Malhotra, M.C. Gonçalves, V. Rosa, G.J.M. Fechine, Polymer nanocomposites based on poly(ε-caprolactone), hydroxyapatite and graphene oxide. J. Polym. Environ. 28(1), 331 (2019)

    Article  CAS  Google Scholar 

  24. H.-M. Ng, S.-T. Bee, L. TinSin, C.T. Ratnam, A.R. Rahmat, Hydroxyapatite for poly(α-hydroxy esters) biocomposites applications. Polym. Rev. 59(2), 187 (2018)

    Article  CAS  Google Scholar 

  25. K. R. Tabriz, A. A. Katbab AA. Preparation of modified-TiO2/PLA nanocomposite films: Micromorphology, photo-degradability and antibacterial studies. In AIP Conference Proceedings (2017). https://doi.org/10.1063/1.5016736

  26. W. Siriprom, N. Sangwaranatee, C. Herman, K. Chantarasunthon, K. Teanchai, N. Chamchoi, Characterization and analyzation of the poly (L-lactic acid) (PLA) films. Mater. Today Proc. 5(7), 14803 (2018)

    Article  CAS  Google Scholar 

  27. J. Ahmad, K. Deshmukh, M. Habib, M.B. Hägg, Influence of TiO2 nanoparticles on the morphological, thermal and solution properties of PVA/TiO2 nanocomposite membranes. Arab. J. Sci. Eng. 39(10), 6805 (2014)

    Article  CAS  Google Scholar 

  28. X. Gong, C.Y. Tang, L. Pan, Z. Hao, C.P. Tsui, Characterization of poly(vinyl alcohol) (PVA)/ZnO nanocomposites prepared by a one-pot method. Compos. B Eng. 60, 144 (2014)

    Article  CAS  Google Scholar 

  29. M. Zanetti, S. Lomakin, G. Camino, Polymer layered silicate nanocomposites. Macromol. Mater. Eng. 279(1), 1 (2000)

    Article  CAS  Google Scholar 

  30. M.B.R. Silva, M.I.B. Tavares, A.W.M. Junior, R.P.C. Neto, Evaluation of intermolecular interactions in the PHB/ZnO nanostructured materials. J. Nanosci. Nanotechnol. 16(7), 7606 (2016)

    Article  CAS  Google Scholar 

  31. S.I. Marras, K.P. Kladi, I. Tsivintzelis, I. Zuburtikudis, C. Panayiotou, Biodegradable polymer nanocomposites: the role of nanoclays on the thermomechanical characteristics and the electrospun fibrous structure. Acta Biomater. 4(3), 756 (2008)

    Article  CAS  Google Scholar 

  32. P.-C. Ma, M.-Y. Liu, H. Zhang, S.-Q. Wang, R. Wang, K. Wang, Y.-K. Wong, B.-Z. Tang, S.-H. Hong, K.-W. Paik, J.-K. Kim, Enhanced electrical conductivity of nanocomposites containing hybrid fillers of carbon nanotubes and carbon black. ACS Appl. Mater. Interfaces 1(5), 1090 (2009)

    Article  CAS  Google Scholar 

  33. S. Chatterjee, F. Nafezarefi, N.H. Tai, L. Schlagenhauf, F.A. Nüesch, B.T.T. Chu, Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites. Carbon 50(15), 5380 (2012)

    Article  CAS  Google Scholar 

  34. D. Doganay, S. Coskun, C. Kaynak, H.E. Unalan, Electrical, mechanical and thermal properties of aligned silver nanowire/polylactide nanocomposite films. Compos. B Eng. 99, 288 (2016)

    Article  CAS  Google Scholar 

  35. S.S. Borkotoky, A.K. Pal, V. Katiyar, Poly(lactic acid)/modified chitosan-based microcellular foams: thermal and crystallization behavior with wettability and porosimetric investigations. J. Appl. Polym. Sci. 136(12), 47236 (2018)

    Article  CAS  Google Scholar 

  36. G. Wang, D. Zhang, B. Li, G. Wan, G. Zhao, A. Zhang, Strong and thermal-resistance glass fiber-reinforced polylactic acid (PLA) composites enabled by heat treatment. Int. J. Biol. Macromol. 129, 448 (2019)

    Article  CAS  Google Scholar 

  37. I. Bayraktar, D. Doganay, S. Coskun, C. Kaynak, G. Akca, H.E. Unalan, 3D printed antibacterial silver nanowire/polylactide nanocomposites. Compos. B Eng. 172, 671 (2019)

    Article  CAS  Google Scholar 

  38. S.Z. Rogovina, E.V. Prut, K.V. Aleksanyan, V.G. Krasheninnikov, E.O. Perepelitsina, D.P. Shashkin, A.A. Berlin, Composites based on starch and polylactide. Polym. Sci. Ser. B 61(3), 334 (2019)

    Article  CAS  Google Scholar 

  39. R.C.A.G. Mota, E.O. da Silva, L.R. de Menezes, Effect of the addiction of metal oxide nanoparticles on the physical, chemical and thermal properties of pva based nanocomposites. MSA 9(5), 473 (2018)

    Article  CAS  Google Scholar 

  40. A.R. Aragão Melo, E. Oliveira da Silva, L.R. Menezes, M.I.B. Tavares, The effect of modified cellulose particles on morphology and properties ethylene vinyl acetate copolymer. Polym. Test. 68, 333 (2018)

    Article  CAS  Google Scholar 

  41. B.S. Bouakaz, I. Pillin, A. Habi, Y. Grohens, Synergy between fillers in organomontmorillonite/graphene–PLA nanocomposites. Appl. Clay Sci. 116–117, 69 (2015)

    Article  CAS  Google Scholar 

  42. T.V. Toniatto, B.V.M. Rodrigues, T.C.O. Marsi, R. Ricci, F.R. Marciano, T.J. Webster, A.O. Lobo, Nanostructured poly (lactic acid) electrospun fiber with high loadings of TiO2 nanoparticles: Insights into bactericidal activity and cell viability. Mater. Sci. Eng. C 71, 381 (2017)

    Article  CAS  Google Scholar 

  43. M. Rapa, R.N. Darie-Nita, P. Preda, V. Coroiu, R. Tatia, C. Vasile, E. Matei, A.M. Predescu, M.-E. Maxim, PLA/collagen hydrolysate/silver nanoparticles bionanocomposites for potential antimicrobial urinary drains. Polym. Plast. Technol. Mater. 58(18), 2041 (2019)

    CAS  Google Scholar 

  44. A. Mohammadi, A.H. Doctorsafaei, S.B. Burujeny, H.A. Rudbari, N. Kordestani, S.A. Ayati Najafabadi, Silver(I) complex with a Schiff base ligand extended waterborne polyurethane: a developed strategy to obtain a highly stable antibacterial dispersion impregnated with in situ formed silver nanoparticles. Chem. Eng. J. 381, 122776 (2020)

    Article  CAS  Google Scholar 

  45. M. Adabi, M. Naghibzadeh, M. Adabi, M.A. Zarrinfard, S.S. Esnaashari, A.M. Seifalian, R. Faridi-Majidi, H. Tanimowo Aiyelabegan, H. Ghanbari, Biocompatibility and nanostructured materials: applications in nanomedicine. Artif. Cells Nanomed. Biotechnol. 45(4), 833 (2016)

    Article  CAS  Google Scholar 

  46. R. Augustine, A. Augustine, N. Kalarikkal, S. Thomas, Fabrication and characterization of biosilver nanoparticles loaded calcium pectinate nano-micro dual-porous antibacterial wound dressings. Prog. Biomater. 5(3–4), 223 (2016)

    Article  CAS  Google Scholar 

  47. M. Jedrzejczak-Silicka and E. Mijowska: in Cytotoxicity (InTech, 2018).

  48. Z. Hussain, Nanotechnology guided newer intervention for treatment of osteoporosis: efficient bone regeneration by up-regulation of proliferation, differentiation and mineralization of osteoblasts. Int. J. Polym. Mater. Polym. Biomater. (2019). https://doi.org/10.1080/00914037.2019.1683558

    Article  Google Scholar 

  49. R. Fairag, D.H. Rosenzweig, J.L. Ramirez-Garcialuna, M.H. Weber, L. Haglund, Three-dimensional printed polylactic acid scaffolds promote bone-like matrix deposition in vitro. ACS Appl. Mater. Interfaces. 11(17), 15306–15315 (2019)

    Article  CAS  Google Scholar 

  50. F. Freeman, D. Browe, J. Nulty, S. Von Euw, W. Grayson, D. Kelly, Biofabrication of multiscale bone extracellular matrix scaffolds for bone tissue engineering. eCM 38, 168 (2019)

    Article  CAS  Google Scholar 

  51. M. Ding, N. Sahebgharani, F. Musharavati, F. Jaber, E. Zalnezhad, G.H. Yoon, Synthesis and properties of HA/ZnO/CNT nanocomposite. Ceram. Int. 44(7), 7746 (2018)

    Article  CAS  Google Scholar 

  52. R. De Santis, V. Guarino, L. Ambrosio, Bone Repair Biomaterials (Elsevier, New York, 2019), pp. 273–299

    Book  Google Scholar 

  53. L.I. Alrawi, N.Z. Noriman, M.K. Alomar, A.M. Alakrach, O.S. Dahham, R. Hamzah, B.O. Betar, T.M. Jassam, PLA/MMT-TiO2 bionanocomposites: chemical structure and surface wettability. DDF 398, 136 (2020)

    Article  Google Scholar 

  54. E. Adomavičiūtė, S. Pupkevičiūtė, V. Juškaitė, M. Žilius, S. Stanys, A. Pavilonis, V. Briedis, Formation and investigation of electrospun PLA materials with propolis extracts and silver nanoparticles for biomedical applications. J. Nanomater. 2017, 1 (2017)

    Article  CAS  Google Scholar 

  55. S. Saber-Samandari, S. Saber-Samandari, S. Kiyazar, J. Aghazadeh, A. Sadeghi, In vitro evaluation for apatite-forming ability of cellulose-based nanocomposite scaffolds for bone tissue engineering. Int. J. Biol. Macromol. 86, 434 (2016)

    Article  CAS  Google Scholar 

  56. M. Bacino, V. Girn, H. Nurrohman, K. Saeki, S.J. Marshall, L. Gower, E. Saeed, R. Stewart, T. Le, G.W. Marshall, S. Habelitz, Integrating the PILP-mineralization process into a restorative dental treatment. Dent. Mater. 35(1), 53 (2019)

    Article  CAS  Google Scholar 

  57. N. Rocton, H. Oudadesse, B. Lefeuvre, H. Peisker, K. Rbii, Fine analysis of interaction mechanism of bioactive glass surface after soaking in SBF solution: AFM and ICP-OES investigations. Appl. Surf. Sci. 505, 144076 (2020)

    Article  CAS  Google Scholar 

  58. C. Liu, J. Shen, K.W.K. Yeung, S.C. Tjong, Development and antibacterial performance of novel polylactic acid-graphene oxide-Silver nanoparticle hybrid nanocomposite mats prepared by electrospinning. ACS Biomater. Sci. Eng. 3(3), 471 (2017)

    Article  CAS  Google Scholar 

  59. M. Ribeiro, M.P. Ferraz, F.J. Monteiro, M.H. Fernandes, M.M. Beppu, D. Mantione, H. Sardon, Antibacterial silk fibroin/nanohydroxyapatite hydrogels with silver and gold nanoparticles for bone regeneration. Nanomed. Nanotechnol. Biol. Med. 13(1), 231 (2017)

    Article  CAS  Google Scholar 

  60. B.S. Munteanu, Z. Aytac, G.M. Pricope, T. Uyar, C. Vasile, Polylactic acid (PLA)/Silver-NP/Vitamin E bionanocomposite electrospun nanofibers with antibacterial and antioxidant activity. J. Nanopart. Res. (2014). https://doi.org/10.1007/s11051-014-2643-4

    Article  Google Scholar 

  61. A.A. Singh, J. Wei, N. Herrera, S. Geng, K. Oksman, Synergistic effect of chitin nanocrystals and orientations induced by solid-state drawing on PLA-based nanocomposite tapes. Compos. Sci. Technol. 162, 140 (2018)

    Article  CAS  Google Scholar 

  62. V. Narayanamurthy, F. Samsuri, A.Y. Firus Khan, H.A. Hamzah, M.B. Baharom, T.V. Kumary, P.R. Anil Kumar, D.K. Raj, Direct cell imprint lithography in superconductive carbon black polymer composites: process optimization, characterization and in vitro toxicity analysis. Bioinspir. Biomim. 15(1), 016002 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank IMA/UFRJ, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) - Finance Code 001.

Funding

This work was supported by the Brazilian funding institutions CAPES (Finance Code 001) and CNPQ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel Couto de Azevedo Gonçalves Mota.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Azevedo Gonçalves Mota, R.C., de Menezes, L.R. & da Silva, E.O. Poly(lactic acid) polymers containing silver and titanium dioxide nanoparticles to be used as scaffolds for bioengineering. Journal of Materials Research 36, 406–419 (2021). https://doi.org/10.1557/s43578-020-00038-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-020-00038-9

Keywords

Navigation