Skip to main content
Log in

Plant-inspired soft actuators powered by water

  • Review Article
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Unlike animals, plants lack motion-generating systems such as a central nervous system or muscles, but they have successfully developed mechanisms to sense and respond to environmental changes, ensuring their survival. Most of their movements rely on the movement of water into and out of their cells or tissues, which are intrinsically soft and porous. Understanding and harnessing these natural processes can lead to the development of environmentally friendly and biocompatible soft actuator systems. This article explains the strategies employed by plants to generate movement through water transportation, categorizing them into osmosis-driven and hygroscopic swelling-driven mechanisms. Additionally, we discuss the latest trends in soft actuators that replicate plant water-utilizing movements, suggest directions for further development, and provide a review of practical applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Adapted with permission from Reference 31. © 2011 Elsevier. (c) Main pulvinus of Mimosa pudica showing the changes from its open state to closed state after mechanical stimulation. Adapted with permission from Reference 33. © 2000 Springer Nature. (d) Drosera stolonifera with open leaves and leaves folded to capture prey. (e) Mimosa pudica before and after touch stimulation. (f) Venus flytrap (Dionaea muscipula) with its trap in open and closed states. (d–f) Photos by B.A. Rice (2018). The Carnivorous Plant FAQ v.12. https://www.sarracenia.com/faq.html. (g) Comparison of hydrostatic pressures of plant cells and common mechanical systems, such as car tires and residential water supplies.

Figure 2
Figure 3

Adapted with permission from Reference 70. © 2013 Springer Nature. (c) A pH-responsive hydrogel actuator having polymeric micro-fins embedded within the hydrogels. Adapted with permission from Reference 73. © 2015 Springer Nature. (d) Liquid lens system based on temperature-responsive hydrogel actuators. (Scale bar: 1 mm) Adapted with permission from Reference 74. © 2006 Springer Nature. (e) Halftone gel lithography process using a photo-cross-linkable hydrogel. Spatially patterned swelling achieved through local UV exposure. Adapted with permission from Reference 76. © 2012 AAAS. (f) “Ionoprinting” technique that achieves controlled swelling ratio by imprinting ions via electric fields. (Scale bar: 3 mm) Adapted with permission from Reference 77. © 2013 Springer Nature. (g) Embedding of stiff cellulose fibrils within hydrogels for localized anisotropy. The cellulose fibrils are aligned during the printing process. (Scale bar: 5 mm, inset: 2.5 mm) Adapted with permission from Reference 79. © 2016 Springer Nature. (h) Thermoresponsive hydrogel actuator with a layered structure of unilamellar titanate (IV) nanosheets. Significant elongation and contraction of a hydrogel actuator is obtained using co-facially oriented electrolyte nanosheets. Adapted with permission from Reference 80. © 2015 Springer Nature.

Figure 4

Adapted with permission from Reference 3. © 2022 AAAS. (b) Liposomes, spherical vesicles composed of phospholipid bilayers, capable of osmosis due to their inherent structure. (c) “Osmotic engine model” employed in liposome-based actuators within microchannels. Adapted with permission from Reference 90. © 2014 Elsevier.

Figure 5

Adapted with permission from Reference 92. © 2015 Springer Nature. (b) Scales of pine cone responding to surrounding humidity variation to release its seed under a favorable environmental condition. Seeds of (c) wild wheat and (d) Pelargonium have long appendages that can make bending and coiling motion to bury themselves into the soil by repeating bending and coiling motions, respectively. (c) Adapted with permission from Reference 93. © 2007 AAAS. (d) Adapted with permission from Reference 95 with permission. © 2020 Elsevier.

Figure 6
Figure 7

Adapted with permission from Reference 95. © 2020 Elsevier. (b) Wrapping a sponge with a thread that acts as a mechanical constraint. Depending on the orientation of the thread, the pitch and radius of coiling motion change. (Scale bar: 2 cm) Adapted with permission from Reference 122. © 2012 The Royal Society. (c) Controlling the deformation of a shape-memory polymer sheet by UV irradiation to create spatial patterns of the expansion rate to relative humidity (RH). Adapted with permission from Reference 114. © 2022 American Chemical Society. (d) Implementing a coiling actuator by cutting a unidirectionally deposited nanofiber mesh to form a specific angle with the direction of the fiber arrangement. Adapted with permission from Reference 95. © 2020 Elsevier. (e) During the 3D printing process of liquid-crystal elastomer (LCE), the LC is aligned by the shear force. The LC-based actuator shows helical coiling motion. Adapted with permission from Reference 106. © 2021 Wiley.

Figure 8

Adapted with permission from Reference 125. © 2015 Springer Nature. (c) Schematics of a chamber with a periodically moving window. The shaft rotates as the window of the chamber opens and closes, leading to the rotation of the wheels and locomotion of the vehicle. (Scale bar: 1 cm) Adapted with permission from Reference 9. © 2023 Mary Ann Liebert Inc.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no data sets were generated or analyzed during the current study.

References

  1. P. Chen, Y. Xu, S. He, X. Sun, S. Pan, J. Deng, D. Chen, H. Peng, Nat. Nanotechnol. 10, 1077 (2015)

    Article  CAS  PubMed  ADS  Google Scholar 

  2. R. Geer, S. Iannucci, S. Li, Front. Robot. AI 7, 17 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  3. H. Na, Y.-W. Kang, C.S. Park, S. Jung, H.-Y. Kim, J.-Y. Sun, Science 376, 301 (2022)

    Article  CAS  PubMed  ADS  Google Scholar 

  4. F. Zhang, M. Yang, X. Xu, X. Liu, H. Liu, L. Jiang, S. Wang, Nat. Mater. 21, 1357 (2022)

    Article  CAS  PubMed  ADS  Google Scholar 

  5. D. Luo, A. Maheshwari, A. Danielescu, J. Li, Y. Yang, Y. Tao, L. Sun, D.K. Patel, G. Wang, S. Yang, T. Zhang, L. Yao, Nature 614, 463 (2023)

    Article  CAS  PubMed  ADS  Google Scholar 

  6. C.J. Park, J. Ha, H.-R. Lee, K. Park, J.-Y. Sun, H.-Y. Kim, Proc. Natl. Acad. Sci. U.S.A. 120, e2211416120 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. I. Must, E. Sinibaldi, B. Mazzolai, Nat. Commun. 10, 344 (2019)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  8. B. Shin, J. Ha, M. Lee, K. Park, G.H. Park, T.H. Choi, K.-J. Cho, H.-Y. Kim, Sci. Robot. 3, eaar2629 (2018)

    Article  PubMed  Google Scholar 

  9. M. Choi, B. Shin, H.-Y. Kim, Soft Robot. 10, 1171 (2023)

    Article  PubMed  Google Scholar 

  10. E.W. Hawkes, L.H. Blumenschein, J.D. Greer, A.M. Okamura, Sci. Robot. 2, eaan3028 (2017)

    Article  PubMed  Google Scholar 

  11. I. Fiorello, F. Meder, A. Mondini, E. Sinibaldi, C. Filippeschi, O. Tricinci, B. Mazzolai, Commun. Mater. 2, 103 (2021)

    Article  Google Scholar 

  12. S.N. Gorb, Philos. Trans. A Math. Phys. Eng. Sci. 366(1870), 1557 (2008)

    PubMed  ADS  Google Scholar 

  13. Y. Qi, C. Zhou, Y. Qiu, X. Cao, W. Niu, S. Wu, Y. Zheng, W. Ma, H. Ye, S. Zhang, Mater. Horiz. 9, 1243 (2022)

    Article  CAS  PubMed  Google Scholar 

  14. Y. Pan, Z. Yang, C. Li, S.U. Hassan, H.C. Shum, Sci. Adv. 8, eabo1719 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Y. Jung, K. Park, K.H. Jensen, W. Kim, H.-Y. Kim, J. R. Soc. Interface 16, 20190556 (2019)

    PubMed  PubMed Central  Google Scholar 

  16. N.E. Robbins, J.R. Dinneny, Proc. Natl. Acad. Sci. U.S.A. 115, E822 (2018)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. L.X. Dupuy, M. Mimault, D. Patko, V. Ladmiral, B. Ameduri, M.P. MacDonald, M. Ptashnyk, Curr. Opin. Genet. Dev. 51, 18 (2018)

    Article  CAS  PubMed  Google Scholar 

  18. K.H. Jensen, K. Berg-Sørensen, H. Bruus, N.M. Holbrook, J. Liesche, A. Schulz, M.A. Zwieniecki, T. Bohr, Rev. Mod. Phys. 88, 035007 (2016)

    Article  ADS  Google Scholar 

  19. J. Dumais, Y. Forterre, Annu. Rev. Fluid Mech. 44, 453 (2012)

    Article  ADS  Google Scholar 

  20. Y. Forterre, J. Exp. Bot. 64, 4745 (2013)

    Article  CAS  PubMed  Google Scholar 

  21. Q. Guo, E. Dai, X. Han, S. Xie, E. Chao, Z. Chen, J. R. Soc. Interface 12, 20150598 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  22. T. Sibaoka, Annu. Rev. Plant Physiol. 20, 165 (1969)

    Article  CAS  Google Scholar 

  23. D.J. Cosgrove, Nat. Rev. Mol. Cell Biol. 6, 850 (2005)

    Article  CAS  PubMed  Google Scholar 

  24. E. Münch, Die Stoffbewegungen in der Pflanze (G. Fischer, Jena, 1930)

    Google Scholar 

  25. K.H. Jensen, J. Liesche, T. Bohr, A. Schulz, Plant Cell Environ. 35, 1065 (2012)

    Article  CAS  PubMed  Google Scholar 

  26. T. Kanahama, S. Tsugawa, M. Sato, Sci. Rep. 13, 2063 (2023)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  27. A. Kempe, T. Lautenschläger, A. Lange, C. Neinhuis, Plant Biol. 16(1), 264 (2014)

    Article  CAS  PubMed  Google Scholar 

  28. K.J. Niklas, Am. J. Bot. 76, 929 (1989)

    Article  Google Scholar 

  29. A.K. Bastola, P. Soffiatti, M. Behl, A. Lendlein, N.P. Rowe, J. R. Soc. Interface 18, 20210040 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  30. H. Meidner, T.A. Mansfield, Physiology of Stomata (McGraw-Hill, London, 1968)

    Google Scholar 

  31. T. Kinoshita, Y. Hayashi, Int. Rev. Cell Mol. Biol. 289, 89 (2011)

    Article  CAS  PubMed  Google Scholar 

  32. J.I. Schroeder, R. Hedrich, J.M. Fernandez, Nature 312, 361 (1984)

    Article  CAS  ADS  Google Scholar 

  33. K. Kameyama, Y. Kishi, M. Yoshimura, N. Kanzawa, M. Sameshima, T. Tsuchiya, Nature 407, 37 (2000)

    Article  CAS  PubMed  ADS  Google Scholar 

  34. A.G. Volkov, J.C. Foster, K.D. Baker, V.S. Markin, Plant Signal. Behav. 5(10), 1211 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  35. H.W.J. Ragetli, M. Weintraub, E. Lo, Can. J. Bot. 50, 159 (1972)

    Article  Google Scholar 

  36. S.E. Williams, B.G. Pickard, Planta 103, 193 (1972)

    Article  CAS  PubMed  Google Scholar 

  37. S.E. Williams, B.G. Pickard, Planta 103, 222 (1972)

    Article  CAS  PubMed  Google Scholar 

  38. M. Weintraub, New Phytol. 50(3), 357 (1952)

    Article  Google Scholar 

  39. M. Malone, New Phytol. 128(1), 49 (1994)

    Article  CAS  PubMed  Google Scholar 

  40. H. Stoeckel, K. Takeda, J. Membr. Biol. 146, 201 (1995)

    Article  CAS  PubMed  Google Scholar 

  41. Y. Forterre, J.M. Skotheim, J. Dumais, L. Mahadevan, Nature 433, 421 (2005)

    Article  CAS  PubMed  ADS  Google Scholar 

  42. J.R. Di Palma, R. Mohl, W. Best, Science 133, 878 (1961)

    Article  PubMed  ADS  Google Scholar 

  43. G.M. Durak, T. Speck, S. Poppinga, Front. Plant Sci. 13, 970320 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  44. G.M. Durak, R. Thierer, R. Sachse, M. Bischoff, T. Speck, S. Poppinga, Adv. Sci. 9, 2201362 (2022)

    Article  CAS  Google Scholar 

  45. R. Sachse, A. Westermeier, M. Mylo, J. Nadasdi, M. Bischoff, T. Speck, S. Poppinga, Proc. Natl. Acad. Sci. U.S.A. 117, 16035 (2020)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  46. P. Simons, The Action Plant (Blackwell Publishing, Oxford, 1992)

    Google Scholar 

  47. F. Lloyd, The Carnivorous Plants (Donald Publishing, Hampton Falls, 1942)

  48. G. Joos, I.M. Freeman, Theoretical Physics (Courier Corporation, North Chelmsford, 2013)

  49. P. Atkins, P.W. Atkins, J. de Paula, Atkins’ Physical Chemistry (Oxford University Press, Oxford, 2014)

  50. P. Bharmoria, H. Gupta, V. Mohandas, P.K. Ghosh, A. Kumar, J. Phys. Chem. B 116, 11712 (2012)

    Article  CAS  PubMed  Google Scholar 

  51. N.J.W. Clipson, A.D. Tomos, T.J. Flowers, R.G.W. Jones, Planta 165, 392 (1985)

    Article  CAS  PubMed  Google Scholar 

  52. Y.X. Kim, B. Stumpf, J. Sung, S.J. Lee, Cells 7(10), 180 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. H. Schneider, J. Zhu, U. Zimmermann, Plant Cell Environ. 20, 221 (1997)

    Article  Google Scholar 

  54. K. Itoh, Y. Nakamura, H. Kawata, T. Yamada, E. Ohta, M. Sakata, Plant Cell Physiol. 28, 987 (1987)

    Google Scholar 

  55. P.J. Franks, T.N. Buckley, J.C. Shope, K.A. Mott, Plant Physiol. 125, 1577 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. H.L. Gorton, Plant Physiol. 83, 945 (1987)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. H.L. Gorton, Plant Physiol. 83, 951 (1987)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. H.-X. Chang, L.A. Miller, G.L. Hartman, Phytopathology 104, 977 (2014)

    Article  PubMed  Google Scholar 

  59. O. Kedem, A. Katchalsky, Biochim. Biophys. Acta 27, 229 (1958)

    Article  CAS  PubMed  Google Scholar 

  60. K.S. Spiegler, O. Kedem, Desalination 1, 311 (1966)

    Article  CAS  Google Scholar 

  61. E. Steudle, “Water Flow in Plants and Its Coupling to Other Processes: An Overview,” in Methods in Enzymology (Academic, New York, 1989), p.183

  62. E. Sinibaldi, A. Argiolas, G.L. Puleo, B. Mazzolai, PLoS ONE 9, e102461 (2014)

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  63. E. Sinibaldi, G. Puleo, F. Mattioli, V. Mattoli, F. Di Michele, L. Beccai, F. Tramacere, S. Mancuso, B. Mazzolai, Bioinspir. Biomim. 8, 025002 (2013)

    Article  CAS  PubMed  ADS  Google Scholar 

  64. S. Yu-Chuan, L. Liwei, A.P. Pisano, J. Microelectromech. Syst. 11, 736 (2002)

    Article  Google Scholar 

  65. E. Freeman, L. Weiland, J. Intell. Mater. Syst. Struct. 23, 1395 (2012)

    Article  Google Scholar 

  66. K. Dušek, D. Patterson, J. Polym. Sci. 6, 1209 (1968)

    Article  Google Scholar 

  67. T. Tanaka, Phys. Rev. Lett. 40, 820 (1978)

    Article  CAS  ADS  Google Scholar 

  68. Q. Xing, K. Yates, C. Vogt, Z. Qian, M.C. Frost, F. Zhao, Sci. Rep. 4, 4706 (2014)

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  69. H. Holback, Y. Yeo, K. Park, “Hydrogel Swelling Behavior and Its Biomedical Applications,” in Biomedical Hydrogels (Elsevier, Amsterdam, 2011), p. 3

    Book  Google Scholar 

  70. S.Y. Yang, E.D. O’Cearbhaill, G.C. Sisk, K.M. Park, W.K. Cho, M. Villiger, B.E. Bouma, B. Pomahac, J.M. Karp, Nat. Commun. 4, 1702 (2013)

    Article  PubMed  ADS  Google Scholar 

  71. A.K. Bastola, N. Rodriguez, M. Behl, P. Soffiatti, N.P. Rowe, A. Lendlein, Mater. Des. 202, 109515 (2021)

    Article  CAS  Google Scholar 

  72. D.J. Beebe, J.S. Moore, J.M. Bauer, Q. Yu, R.H. Liu, C. Devadoss, B.-H. Jo, Nature 404, 588 (2000)

    Article  CAS  PubMed  ADS  Google Scholar 

  73. A. Shastri, L.M. McGregor, Y. Liu, V. Harris, H. Nan, M. Mujica, Y. Vasquez, A. Bhattacharya, Y. Ma, M. Aizenberg, O. Kuksenok, A.C. Balazs, J. Aizenberg, X. He, Nat. Chem. 7, 447 (2015)

    Article  CAS  PubMed  Google Scholar 

  74. L. Dong, A.K. Agarwal, D.J. Beebe, H. Jiang, Nature 442, 551 (2006)

    Article  CAS  PubMed  ADS  Google Scholar 

  75. A. Nojoomi, H. Arslan, K. Lee, K. Yum, Nat. Commun. 9, 3705 (2018)

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  76. J. Kim, J.A. Hanna, M. Byun, C.D. Santangelo, R.C. Hayward, Science 335, 1201 (2012)

    Article  MathSciNet  CAS  PubMed  ADS  Google Scholar 

  77. E. Palleau, D. Morales, M.D. Dickey, O.D. Velev, Nat. Commun. 4, 2257 (2013)

    Article  PubMed  ADS  Google Scholar 

  78. J.C. Athas, C.P. Nguyen, B.C. Zarket, A. Gargava, Z. Nie, S.R. Raghavan, ACS Appl. Mater. Interfaces 8, 19066 (2016)

    Article  CAS  PubMed  Google Scholar 

  79. A. Sydney Gladman, E.A. Matsumoto, R.G. Nuzzo, L. Mahadevan, J.A. Lewis, Nat. Mater. 15, 413 (2016)

    Article  CAS  PubMed  ADS  Google Scholar 

  80. Y.S. Kim, M. Liu, Y. Ishida, Y. Ebina, M. Osada, T. Sasaki, T. Hikima, M. Takata, T. Aida, Nat. Mater. 14, 1002 (2015)

    Article  CAS  PubMed  ADS  Google Scholar 

  81. X. Liu, C. Steiger, S. Lin, G.A. Parada, J. Liu, H.F. Chan, H. Yuk, N.V. Phan, J. Collins, S. Tamang, G. Traverso, X. Zhao, Nat. Commun. 10, 493 (2019)

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  82. R. Yoshida, K. Uchida, Y. Kaneko, K. Sakai, A. Kikuchi, Y. Sakurai, T. Okano, Nature 374, 240 (1995)

    Article  CAS  ADS  Google Scholar 

  83. W. Fan, C. Shan, H. Guo, J. Sang, R. Wang, R. Zheng, K. Sui, Z. Nie, Sci. Adv. 5, eaav7174 (2019)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  84. H. Yuk, S. Lin, C. Ma, M. Takaffoli, N.X. Fang, X. Zhao, Nat. Commun. 8, 14230 (2017)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  85. Y. Osada, H. Okuzaki, H. Hori, Nature 355, 242 (1992)

    Article  CAS  ADS  Google Scholar 

  86. E. Wang, M.S. Desai, S.-W. Lee, Nano Lett. 13, 2826 (2013)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  87. K. Fujiwara, M. Yanagisawa, ACS Synth. Biol. 3, 870 (2014)

    Google Scholar 

  88. M. Andes-Koback, C.D. Keating, J. Am. Chem. Soc. 133, 9545 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. K. Shoji, R. Kawano, Lab Chip 19, 3472 (2019)

    Article  CAS  PubMed  Google Scholar 

  90. K.M. Stroka, H. Jiang, S.-H. Chen, Z. Tong, D. Wirtz, S.X. Sun, K. Konstantopoulos, Cell 157, 611 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. M.J. Harrington, K. Razghandi, F. Ditsch, L. Guiducci, M. Rueggeberg, J.W.C. Dunlop, P. Fratzl, C. Neinhuis, I. Burgert, Nat. Commun. 2, 337 (2011)

    Article  PubMed  ADS  Google Scholar 

  92. A. Rafsanjani, V. Brulé, T.L. Western, D. Pasini, Sci. Rep. 5, 8064 (2015)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  93. R. Elbaum, L. Zaltzman, I. Burgert, P. Fratzl, Science 316, 884 (2007)

    Article  CAS  PubMed  ADS  Google Scholar 

  94. W. Jung, S.M. Choi, W. Kim, H.-Y. Kim, Phys. Fluids 29, 041702 (2017)

    Article  ADS  Google Scholar 

  95. J. Ha, S.M. Choi, B. Shin, M. Lee, W. Jung, H.-Y. Kim, Extreme Mech. Lett. 38, 100746 (2020)

    Article  Google Scholar 

  96. D. Evangelista, S. Hotton, J. Dumais, J. Exp. Biol. 214, 521 (2011)

    Article  PubMed  Google Scholar 

  97. C. Dawson, J.F.V. Vincent, A.-M. Rocca, Nature 390, 668 (1997)

    Article  CAS  ADS  Google Scholar 

  98. Z. Gürdal, R.T. Haftka, P. Hajela, Design and Optimization of Laminated Composite Materials (Wiley, New York, 1999)

    Google Scholar 

  99. B. Shin, Y. Jung, M. Choi, H.-Y. Kim, Phys. Rev. Appl. 18, 044061 (2022)

    Article  CAS  ADS  Google Scholar 

  100. E. Reyssat, L. Mahadevan, J. R. Soc. Interface 6(39), 951 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  101. M. Lee, S. Kim, H.-Y. Kim, L. Mahadevan, Phys. Fluids 28, 042101 (2016)

    Article  ADS  Google Scholar 

  102. S. Poppinga, P. Schenck, O. Speck, T. Speck, B. Bruchmann, T. Masselter, Biomimetics 6, 42 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  103. T. Cheng, D. Wood, L. Kiesewetter, E. Özdemir, K. Antorveza, A. Menges, Bioinspir. Biomim 16, 055004 (2021)

    Article  ADS  Google Scholar 

  104. X. Chen, L. Mahadevan, A. Driks, O. Sahin, Nat. Nanotechnol. 9, 137 (2014)

    Article  CAS  PubMed  ADS  Google Scholar 

  105. D.J. Broer, C.M.W. Bastiaansen, M.G. Debije, A.P.H.J. Schenning, Angew. Chem. Int. Ed. 51, 7102 (2012)

    Article  CAS  Google Scholar 

  106. K. Kim, Y. Guo, J. Bae, S. Choi, H.Y. Song, S. Park, K. Hyun, S.-K. Ahn, Small 17, 2100910 (2021)

    Article  CAS  Google Scholar 

  107. J. Wei, S. Jia, J. Guan, C. Ma, Z. Shao, ACS Appl. Mater. Interfaces 13, 54417 (2021)

    Article  CAS  PubMed  Google Scholar 

  108. M. Wang, Q. Li, J. Shi, X. Cao, L. Min, X. Li, L. Zhu, Y. Lv, Z. Qin, X. Chen, K. Pan, ACS Appl. Mater. Interfaces 12, 33104 (2020)

    Article  CAS  PubMed  Google Scholar 

  109. Y. Ma, Y. Zhang, B. Wu, W. Sun, Z. Li, J. Sun, Angew. Chem. Int. Ed. 50, 6254 (2011)

    Article  CAS  Google Scholar 

  110. S.-W. Lee, J.H. Prosser, P.K. Purohit, D. Lee, ACS Macro Lett. 2, 960 (2013)

    Article  CAS  PubMed  Google Scholar 

  111. L. Yang, J. Cui, L. Zhang, X. Xu, X. Chen, D. Sun, Adv. Funct. Mater. 31, 2101378 (2021)

    Article  CAS  Google Scholar 

  112. F. Gong, H. Li, J. Huang, Y. Jing, Z. Hu, D. Xia, Q. Zhou, R. Xiao, Nano Energy 91, 106677 (2022)

    Article  CAS  Google Scholar 

  113. R.M. Erb, J.S. Sander, R. Grisch, A.R. Studart, Nat. Commun. 4, 1712 (2013)

    Article  PubMed  ADS  Google Scholar 

  114. J. Xue, Y. Ge, Z. Liu, Z. Liu, J. Jiang, G. Li, ACS Appl. Mater. Interfaces 14(8), 10836 (2022)

    Article  CAS  PubMed  Google Scholar 

  115. L. Cecchini, S. Mariani, M. Ronzan, A. Mondini, N.M. Pugno, B. Mazzolai, Adv. Sci. 10, 2205146 (2023)

    Article  Google Scholar 

  116. M. Ma, L. Guo, D.G. Anderson, R. Langer, Science 339, 186 (2013)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  117. W. Wang, L. Yao, C.-Y. Cheng, T. Zhang, H. Atsumi, L. Wang, G. Wang, O. Anilionyte, H. Steiner, J. Ou, K. Zhou, C. Wawrousek, K. Petrecca, A.M. Belcher, R. Karnik, X. Zhao, D.I.C. Wang, H. Ishii, Sci. Adv. 3, e1601984 (2017)

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  118. S. Reichert, A. Menges, D. Correa, Comput. Aided Des. 60, 50 (2015)

    Article  Google Scholar 

  119. S. Poppinga, D. Correa, B. Bruchmann, A. Menges, T. Speck, Integr. Comp. Biol. 60, 886 (2020)

    Article  PubMed  Google Scholar 

  120. Y. Tahouni, F. Krüger, S. Poppinga, D. Wood, M. Pfaff, J. Rühe, T. Speck, A. Menges, Bioinspir. Biomim. 16, 055002 (2021)

    Article  CAS  Google Scholar 

  121. D. Correa, S. Poppinga, M.D. Mylo, A.S. Westermeier, B. Bruchmann, A. Menges, T. Speck, Philos. Trans. R. Soc. A 378, 20190445 (2020)

    Article  CAS  ADS  Google Scholar 

  122. Y. Abraham, C. Tamburu, E. Klein, J.W.C. Dunlop, P. Fratzl, U. Raviv, R. Elbaum, J. R. Soc. Interface 9, 640 (2012)

    Article  PubMed  Google Scholar 

  123. T. Cheng, M. Thielen, S. Poppinga, Y. Tahouni, D. Wood, T. Steinberg, A. Menges, T. Speck, Adv. Sci. 8, 2100411 (2021)

    Article  Google Scholar 

  124. E.S. Sahin, T. Cheng, D. Wood, Y. Tahouni, S. Poppinga, M. Thielen, T. Speck, A. Menges, Biomimetics 8, 233 (2023)

    Article  PubMed  PubMed Central  Google Scholar 

  125. X. Chen, D. Goodnight, Z. Gao, A.H. Cavusoglu, N. Sabharwal, M. DeLay, A. Driks, O. Sahin, Nat. Commun. 6, 7346 (2015)

    Article  CAS  PubMed  ADS  Google Scholar 

  126. K. Zhang, A. Geissler, M. Standhardt, S. Mehlhase, M. Gallei, L. Chen, C. Marie Thiele, Sci. Rep. 5, 11011 (2015)

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  127. Y. Zhang, H. Jiang, F. Li, Y. Xia, Y. Lei, X. Jin, G. Zhang, H. Li, J. Mater. Chem. A 5, 14604 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (Grant Nos. 2018-052541 and 2021-017476) and the Gachon University research fund of 2019 (GCU-2019-0800). The administrative support from SNU Institute of Engineering Research is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

B.S. and S.J. conducted literature review. B.S., S.J., and M.C. wrote the initial draft. K.P. and H.-Y.K. conceived the project and supervised the article.

Corresponding authors

Correspondence to Keunhwan Park or Ho-Young Kim.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, B., Jung, S., Choi, M. et al. Plant-inspired soft actuators powered by water. MRS Bulletin 49, 159–172 (2024). https://doi.org/10.1557/s43577-024-00663-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43577-024-00663-3

Keywords

Navigation