Skip to main content
Log in

From patterning heterogeneity to nanoglass: A new approach to harden and toughen metallic glasses

  • Impact: Original Paper, Article
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Monolithic metallic glass is a quasi-brittle material with little plasticity on a continuum scale, but tremendous local plasticity in nano- and micron scales. One way to enhance the macroscopic plasticity and toughness is to make composites with inclusions that can alter the local shear behavior. By far, however, the attempt still faces tremendous challenges. Here, we propose a new concept by introducing microstructures into the structureless glasses by spatially patterning the heterogeneities. One case study shown here is to form the stochastically distributed glass domains or “grains” and their boundaries that have different kinds of heterogeneities. We demonstrate that the granular metallic glass (GMG) can be toughened and even “hardened” by tuning the grain-boundary width, amount of free volumes, and grain size. The hardening mechanisms in the emerging GMG are intricately related to how shear banding is blocked or promoted by the spatially patterned heterogeneity if proper length scales of the heterogeneities are organized and function synchronously.

Impact statement

Different from crystalline materials, glassy materials do not have ordered atomic structures. As a result, they all appear brittle macroscopically, which includes metallic glasses despite the well-known metallic bonding that supposedly gives rise to ductility. As a twist, different from other types of glasses such as oxide glasses, metallic glasses possess tremendous ductility in nanometer and micrometer scales. Therefore, how to manage the microscopic ductility and extend it to macroscopic scale becomes one of the most challenging engineering as well as scientific problems facing materials scientists and engineers.

In this article, we present a “thought-experiment” to predict the possibility and viability of enhancing the plasticity of metallic glasses, and its strength as well. The main idea is to create a new design of the glassy materials, the granular glass, via spatially patterning heterogeneities. To prove this idea, we used finite element modeling. The extensive work and analysis show that this new approach is not only possible but effective in “engineering” ductility in the materials that are known as “brittle.” We expect this work to stimulate experiments that can turn this idea into reality.

Graphical abstract

Glassy materials do not have ordered atomic structures. As a result, they all appear brittle macroscopically. As a twist, different from other types of glasses such as oxide glasses, metallic glasses possess tremendous ductility in small scales on nanometers and micrometers. Therefore, how to manage the microscopic ductility and extend it to macroscopic scale becomes one of the most challenging engineering as well as scientific problems facing materials scientists and engineers. In this article, we predict the possibility and viability of enhancing the plasticity of metallic glasses, and its strength as well. The main idea is to create a new design of the glassy materials, the granular glass, via spatially patterning heterogeneities. To prove this idea, we used finite element modeling. The extensive work and analysis show that this new approach is not only possible but effective in “engineering” ductility into the materials that are known as “brittle.” We expect this work to stimulate experiments that can turn this idea into reality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

Data used in this work are available from the authors upon request.

Code availability

The code used in this work is primarily from ABAQUS, which is available commercially.

References

  1. L.G. Sun, G. Wu, Q. Wang, J. Lu, Mater. Today 38, 114 (2020)

    Article  CAS  Google Scholar 

  2. C.A. Schuh, T.C. Hufnagel, U. Ramamurty, Acta Mater. 55, 4067 (2007)

    Article  CAS  Google Scholar 

  3. J.W. Liu, Q.P. Cao, L.Y. Chen, X.D. Wang, J.Z. Jiang, Acta Mater. 58, 4827 (2010)

    Article  CAS  Google Scholar 

  4. W.-H. Wang, C. Dong, C. Shek, Mater. Sci. Eng. R. 44, 45 (2004)

    Article  Google Scholar 

  5. M.H. Lee, K.S. Lee, J. Das, Scr. Mater. 62, 678 (2010)

    Article  CAS  Google Scholar 

  6. Y. Zhang, W.H. Wang, A.L. Greer, Nat. Mater. 5, 857 (2006)

    Article  CAS  Google Scholar 

  7. C. Suryanarayana, A. Inoue, Bulk Metallic Glasses (CRC Press, New York, 2011)

    Google Scholar 

  8. J. Das, M.B. Tang, W.H. Wang, J. Eckert, Phys. Rev. Lett. 94, 205501 (2005)

    Article  Google Scholar 

  9. K.F. Yao, F. Ruan, Y.Q. Yang, N. Chen, Appl. Phys. Lett. 88, 122106 (2006)

    Article  Google Scholar 

  10. S. Scudino, B. Jerliu, S. Pauly, Scr. Mater. 65, 815 (2011)

    Article  CAS  Google Scholar 

  11. H. Choi-Yim, W.L. Johnson, Appl. Phys. Lett. 71(26), 3808 (1997)

    Article  CAS  Google Scholar 

  12. C.C. Hays, C.P. Kim, W.L. Johnson, Phys. Rev. Lett. 13(84), 2901 (2000)

    Article  Google Scholar 

  13. D.C. Hofmann, J.Y. Suh, A. Wiest, Nature 451, 1085 (2008)

    Article  CAS  Google Scholar 

  14. S.F. Guo, L. Liu, N. Li, Y. Li, Scr. Mater. 62, 329 (2010)

    Article  CAS  Google Scholar 

  15. D.H. Kim, W.T. Kim, E.S. Park, N. Mattern, J. Eckert, Prog. Mater. Sci. 58(8), 1103 (2013)

    Article  CAS  Google Scholar 

  16. E.S. Park, D.H. Kim, Acta Mater. 54, 2597 (2006)

    Article  CAS  Google Scholar 

  17. E.S. Park, J.S. Kyeong, D.H. Kim, Scr. Mater. 57, 49 (2007)

    Article  CAS  Google Scholar 

  18. M. Zhao, M. Li, Metals 2, 488 (2012)

    Article  CAS  Google Scholar 

  19. Y.W. Wang, M. Li, J.W. Xu, Scr. Mater. 113, 10 (2016)

    Article  CAS  Google Scholar 

  20. Y.W. Wang, M. Li, J.W. Xu, Scr. Mater. 135, 41 (2017)

    Article  CAS  Google Scholar 

  21. Y.W. Wang, M. Li, J.W. Xu, Scr. Mater. 130, 12 (2017)

    Article  CAS  Google Scholar 

  22. H. Gleiter, Acta Mater. 48(1), 1 (2000)

    Article  CAS  Google Scholar 

  23. H. Gleiter, Acta Mater. 56, 5875 (2008)

    Article  CAS  Google Scholar 

  24. H. Gleiter, Beilstein J. Nanotechnol. 4, 517 (2013)

    Article  Google Scholar 

  25. J.X. Fang, U. Vainio, W. Puff, Nano Lett. 12, 458 (2012)

    Article  CAS  Google Scholar 

  26. C. Guo, B. Wu, S. Lan, G. Peng, X. Wang, H. Hahn, H. Gleiter, T. Feng, Mater. Res. Lett. 5, 293 (2017)

    Article  CAS  Google Scholar 

  27. H. Gleiter, Prog. Mater. Sci. 33, 223 (1989)

    Article  CAS  Google Scholar 

  28. N. Chen, D.V.L. Luzgin, K.F. Yao, J. Alloys Compd. 707, 371 (2017)

    Article  CAS  Google Scholar 

  29. H. Gleiter, Th. Schimmel, H. Hahn, Nano Today 9(1), 17 (2014)

    Article  CAS  Google Scholar 

  30. M. Zhao, M. Li, Appl. Phys. Lett. 93, 241906 (2008)

    Article  Google Scholar 

  31. Y.F. Gao, Model. Simul. Mater. Sci. Eng. 14, 1329 (2006)

    Article  CAS  Google Scholar 

  32. M. Zhao, M. Li, Y.F. Zheng, Philos. Mag. Lett. 91(11), 705 (2011)

    Article  CAS  Google Scholar 

  33. J. Yi, W.H. Wang, J.J. Lewandowski, Acta Mater. 87(1), 1 (2015)

    Article  CAS  Google Scholar 

  34. Q.K. Li, M. Li, Appl. Phys. Lett. 88, 241903 (2006)

    Article  Google Scholar 

  35. C.Q. Chen, Y.T. Pei, O. Kuzmin, Z.F. Zhang, E. Ma, J.T.M. De Hosson, Phys. Rev. B. 83, 180201 (2011)

    Article  Google Scholar 

  36. X. Wang, F. Jiang, H. Hahn, J. Li, H. Glitter, J. Sunna, J. Fang, Scr. Mater. 98, 40 (2015)

    Article  CAS  Google Scholar 

  37. J.J. Marattukalama, V. Pacheco, D. Karlsson, L. Riekehr, J. Lindwall, F. Forsberg, U. Jansson, M. Sahlberg, B. Hjörvarsson, Addit. Manuf. 33, 101124 (2020)

    Google Scholar 

  38. Y. Ivanisenko, C. Kübel, S.H. Nandam, C. Wang, X. Mu, O. Adjaoud, K. Albe, H. Hahn, Adv. Eng. Mater. 20, 1800404 (2018)

    Article  Google Scholar 

  39. S.H. Nandam, Y. Ivanisenko, R. Schwaiger, Z. Sniadecki, X. Mu, D. Wang, R. Chellali, T. Boll, A. Kilmametov, T. Bergfeldt, H. Gleiter, H. Hahn, Acta Mater. 136, 181 (2017)

    Article  CAS  Google Scholar 

  40. W. Liu, B.A. Sun, H. Gleiter, S. Lan, Y. Tong, X. Wang, H. Hahn, Y. Yang, J. Kai, C.T. Liu, Nano Lett. 18, 4188 (2018)

    Article  CAS  Google Scholar 

  41. X. Wang, F. Jiang, H. Hahn, J. Li, H. Gleiter, J. Sun, J. Fang, Scr. Mater. 116, 95 (2016)

    Article  CAS  Google Scholar 

  42. S.H. Nandam, O. Adjaoud, R. Schwaiger, Y. Mohammed, R. Chellali, D. Wang, K. Albe, H. Hahn, Acta Mater. 193, 252 (2020)

    Article  CAS  Google Scholar 

  43. A. Sharma, S.H. Nandam, H.T. Hahn, K.E. Prasad, Front. Mater. 8, 676764 (2021)

    Article  Google Scholar 

  44. M. Ghidelliab, A. Orekhovcde, A. LiBassia, G. Terraneof, P. Djemiab, G. Abadiasg, M. Norddeh, A. Béchéde, N. Gauquelinde, J. Verbeeckde, J.-P. Raskini, D. Schryversde, T. Pardoenc, H. Idriss, Acta Mater. 213, 116955 (2021)

    Article  Google Scholar 

  45. A. Sharma, S.H. Nandam, H. Hahn, K.E. Prasad, Scr. Mater. 191, 17 (2021)

    Article  CAS  Google Scholar 

  46. S. Adibi, P.S. Branicio, R. Ballarini, RSC Adv. 6, 13548 (2016)

    Article  CAS  Google Scholar 

  47. K. Albe, Y. Ritter, D. Sopu, Mech. Mater. 67, 94 (2013)

    Article  Google Scholar 

  48. D. Şopu, K. Albe, J. Nanotechnol. 6, 537 (2015)

    Google Scholar 

  49. O. Adjaoud, K. Albe, Acta Mater. 145, 322 (2018)

    Article  CAS  Google Scholar 

  50. C. Kalcher, O. Adjaoud, J. Rohrer, A. Stukowski, K. Albe, Scr. Mater. 141, 115 (2017)

    Article  CAS  Google Scholar 

  51. X. Zhou, C. Chen, Int. J. Plast. 80, 75 (2016)

    Article  CAS  Google Scholar 

  52. Z. Sha, P.S. Branicio, H.P. Lee, T.E. Tay, Int. J. Plast. 90, 231 (2017)

    Article  Google Scholar 

  53. Z.D. Sha, P.S. Branicio, Q.X. Pei, Z.S. Liu, H.P. Lee, T.E. Tay, T.J. Wang, Nanoscale 7, 17404 (2015)

    Article  CAS  Google Scholar 

  54. Y. Ritter, D. Sopu, H. Gleiter, K. Albe, Acta Mater. 59, 6588 (2011)

    Article  CAS  Google Scholar 

  55. D. Şopu, C. Soyarslan, B. Sarac, S. Bargmann, M. Stoica, J. Eckert, Acta Mater. 106, 199 (2016)

    Article  Google Scholar 

  56. O. Adjaoud, K. Albe, Acta Mater. 15, 393 (2019)

    Article  Google Scholar 

  57. S. Yuan, P.S. Branicio, Int. J. Plast. 134, 102845 (2020)

    Article  CAS  Google Scholar 

Download references

Funding

Y.W.W. is supported by the Fundamental Research Funds for the Central Universities (FRF-TP-20-028A1) and the Fundamental Research Funds for the Central Universities and The Youth Teacher International Exchange & Growth Program (QNXM20210044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mo Li.

Ethics declarations

Conflit of interest

Here, we declare there are no financial and personal relationships with other people or organizations that could inappropriately influence (bias) this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Gleiter, H. & Li, M. From patterning heterogeneity to nanoglass: A new approach to harden and toughen metallic glasses. MRS Bulletin 48, 56–67 (2023). https://doi.org/10.1557/s43577-022-00347-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43577-022-00347-w

Keywords

Navigation