Skip to main content
Log in

Materials, devices, and systems for high-speed single-photon counting

  • Review Article
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Optical communications and high-speed optoelectronics are enabling technologies for modern information networks. Driven by the need for improved bandwidth, high efficiency, and low noise, advances over the last decades have led to high-performance photodetectors operating at the quantum limit. In particular, single-photon avalanche diodes (SPADs) and superconducting nanowire single-photon detectors (SNSPDs) provide excellent performance in terms of high detection efficiency and low noise. In this article, we highlight materials challenges in these detectors and review recent progress on devices, and systems for high-count-rate single-photon counting with SPADs and SNSPDs. Device configurations specifically designed for high-speed optoelectronics are discussed, including active detector readout schemes. Advantages and tradeoffs of the different device technologies are summarized and compared, providing an outlook on future prospects for performance optimization and emerging applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

[Reproduced from Restelli et al., Single-Photon Workshop (2019)].

Figure 2

Reprinted with permission from Reference 56. © 2016 American Chemical Society. (b) High-speed single-photon detection with SNSPDs gated at 3.8 GHz, resulting in an average time difference td between groups of voltage pulses of 263 ps. Reprinted from Reference 71 with permission of AIP Publishing. (c) Summary of literature reports on high-count-rate SNSPDs operated in free-running and gated mode.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no data sets were generated or analyzed during the current study.

References

  1. C.A. Thraskias, E.N. Lallas, N. Neumann, L. Schares, B.J. Offrein, R. Henker, D. Plettemeier, F. Ellinger, J. Leuthold, I. Tomkos, IEEE Commun. Surv. Tutor. 20, 2758 (2018). https://doi.org/10.1109/COMST.2018.2839672

    Article  Google Scholar 

  2. R. Hadfield, Nat. Photonics 3, 696 (2009). https://doi.org/10.1038/nphoton.2009.230

    Article  CAS  Google Scholar 

  3. J.-P. Chen, C. Zhang, Y. Liu, C. Jiang, W.-J. Zhang, Z.-Y. Han, S.-Z. Ma, X.-L. Hu, Y.-H. Li, H. Liu, F. Zhou, H.-F. Jiang, T.-Y. Chen, H. Li, L.-X. You, Z. Wang, X.-B. Wang, Q. Zhang, J.-W. Pan, Nat. Photonics 15, 570 (2021). https://doi.org/10.1038/s41566-021-00828-5

    Article  CAS  Google Scholar 

  4. Y.-A. Chen, Q. Zhang, T.-Y. Chen, W.-Q. Cai, S.-K. Liao, J. Zhang, K. Chen, J. Yin, J.-G. Ren, Z. Chen, S.-L. Han, Q. Yu, K. Liang, F. Zhou, X. Yuan, M.-S. Zhao, T.-Y. Wang, X. Jiang, L. Zhang, W.-Y. Liu, Y. Li, Q. Shen, Y. Cao, C.-Y. Lu, R. Shu, J.-Y. Wang, L. Li, N.-L. Liu, F. Xu, X.-B. Wang, C.-Z. Peng, J.-W. Pan, Nature 589, 214 (2021). https://doi.org/10.1038/s41586-020-03093-8

    Article  CAS  Google Scholar 

  5. K. Morimoto, A. Ardelean, M.-L. Wu, A.C. Ulku, I.M. Antolovic, C. Bruschini, E. Charbon, Optica 7, 346 (2020). https://doi.org/10.1364/OPTICA.386574

    Article  Google Scholar 

  6. A. McCarthy, N.J. Krichel, N.R. Gemmell, X. Ren, M.G. Tanner, S.N. Dorenbos, V. Zwiller, R.H. Hadfield, G.S. Buller, Opt. Express 21, 8904 (2013). https://doi.org/10.1364/OE.21.008904

    Article  Google Scholar 

  7. S. Yu, Z. Zhang, H. Xia, X. Dou, T. Wu, Y. Hu, M. Li, M. Shangguan, T. Wei, L. Zhao, L. Wang, P. Jiang, C. Zhang, L. You, L. Tao, J. Qiu, Light Sci. Appl. 10, 212 (2021). https://doi.org/10.1038/s41377-021-00650-2

    Article  CAS  Google Scholar 

  8. G.G. Taylor, D. Morozov, N.R. Gemmell, K. Erotokritou, S. Miki, H. Terai, R.H. Hadfield, Opt. Express 27, 38147 (2019). https://doi.org/10.1364/OE.27.038147

    Article  CAS  Google Scholar 

  9. C. Bruschini, H. Homulle, I.M. Antolovic, S. Burri, E. Charbon, Light Sci. Appl. 8, 87 (2019). https://doi.org/10.1038/s41377-019-0191-5

    Article  CAS  Google Scholar 

  10. A.L. Migdall, S.V. Polyakov, J. Fan, J.C. Bienfang, Eds., Single-Photon Generation and Detection: Physics and Applications (Academic Press, Cambridge, 2013)

  11. X. Bai, D. Mcintosh, H. Liu, J.C. Campbell, IEEE Photonics Technol. Lett. 19, 1822 (2007). https://doi.org/10.1109/LPT.2007.906830

    Article  CAS  Google Scholar 

  12. A. Tosi, M. Dalla, F. Zappa, S. Cova, “Germanium and InGaAs/InP SPADs for Single-Photon Detection in the Near-Infrared,” in Advanced Photon Counting Techniques II (SPIE, the International Society for Optics and Photonics, Bellingham, WA, 2007). https://doi.org/10.1117/12.734961

  13. X. Jiang, M.A. Itzler, R. Ben-Michael, K. Slomkowski, M.A. Krainak, S. Wu, X. Sun, IEEE J. Quantum Electron. 44, 3 (2008). https://doi.org/10.1109/JQE.2007.906996

    Article  CAS  Google Scholar 

  14. J. Rothmanm, J. Electron. Mater. 47, 5657 (2018). https://doi.org/10.1007/s11664-018-6475-3

    Article  CAS  Google Scholar 

  15. J.C. Campbell, IEEE J. Sel. Top. Quantum Electron. 28, 380091 (2022). https://doi.org/10.1109/JSTQE.2021.3092963

    Article  Google Scholar 

  16. S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981)

    Google Scholar 

  17. M.A. Wayne, A. Restelli, J.C. Bienfang, P.G. Kwiat, J. Lightwave Technol. 32, 3495 (2014). https://doi.org/10.1109/JLT.2014.2346736

    Article  Google Scholar 

  18. M.A. Itzler, X. Jiang, M. Entwistle, J. Mod. Opt. 59, 1472 (2012). https://doi.org/10.1080/09500340.2012.698659

    Article  CAS  Google Scholar 

  19. A. Singh, W. Anderson, W. Lee, K. Jiao, “Deep Levels in InP by DLTS and TSCAP: Survey and Recent Data,” in 1st International Conference on Indium Phosphide and Related Materials for Advanced Electronic and Optical Devices (SPIE, the International Society for Optics and Photonics, Bellingham, WA, 1989). https://doi.org/10.1117/12.961985

  20. F. Severini, I. Cusini, D. Berretta, K. Pasquinelli, A. Incoronato, F. Villa, IEEE J. Sel. Top. Quantum Electron. 28, 3802808 (2022). https://doi.org/10.1109/JSTQE.2021.3124825

    Article  CAS  Google Scholar 

  21. F. Ceccarelli, G. Acconcia, A. Gulinatti, M. Ghioni, I. Rech, IEEE Photonics Technol. Lett. 31, 102 (2019). https://doi.org/10.1109/LPT.2018.2884740

    Article  CAS  Google Scholar 

  22. J. Liu, Y. Li, L. Ding, Y. Wang, T. Zhang, Q. Wang, J. Fang, IEEE J. Quantum Electron. 52, 4000306 (2016). https://doi.org/10.1109/JQE.2016.2597798

    Article  CAS  Google Scholar 

  23. A. Restelli, J.C. Bienfang, A.L. Migdall, J. Mod. Opt. 59, 1465 (2012). https://doi.org/10.1080/09500340.2012.687463

    Article  CAS  Google Scholar 

  24. N. Namekata, S. Sasamori, S. Inoue, Opt. Express 14, 10043 (2006). https://doi.org/10.1364/OE.14.010043

    Article  CAS  Google Scholar 

  25. N. Namekata, S. Adachi, S. Inoue, IEEE Photonics Technol. Lett. 22, 529 (2010). https://doi.org/10.1109/LPT.2010.2042054

    Article  Google Scholar 

  26. W.-H. Jiang, X.-J. Gao, Y.-Q. Fang, J.-H. Liu, Y. Zhou, L.-Q. Jiang, W. Chen, G. Jin, J. Zhang, J.-W. Pan, Rev. Sci. Instrum. 89, 123104 (2018). https://doi.org/10.1063/1.5055376

    Article  CAS  Google Scholar 

  27. Z.L. Yuan, B.E. Kardynal, A.W. Sharpe, A.J. Shields, Appl. Phys. Lett. 91, 041114 (2007). https://doi.org/10.1063/1.2760135

    Article  CAS  Google Scholar 

  28. A. Restelli, J.C. Bienfang, A.L. Migdall, Appl. Phys. Lett. 102, 141104 (2013). https://doi.org/10.1063/1.4801939

    Article  CAS  Google Scholar 

  29. C. Park, S.-B. Cho, C.-Y. Park, S. Baek, S.-K. Han, Opt. Express 27, 18201 (2019). https://doi.org/10.1364/OE.27.018201

    Article  CAS  Google Scholar 

  30. L.C. Comandar, B. Frohlich, J.F. Dynes, A.W. Sharpe, M. Lucamarini, Z.L. Yuan, R.V. Penty, A.J. Shields, J. Appl. Phys. 117, 083109 (2015). https://doi.org/10.1063/1.4913527

    Article  CAS  Google Scholar 

  31. J.C. Bienfang, A. Restelli, “Characterization of an Advanced Harmonic Subtraction Single-Photon Detection System Based on an InGaAs/InP Avalanche Diode,” in Advanced Photon Counting Techniques X (SPIE, the International Society for Optics and Photonics, Bellingham, WA, 2016). https://doi.org/10.1117/12.2228331

  32. M.A. Wayne, J.C. Bienfang, A.L. Migdall, Appl. Phys. Lett. 118, 134002 (2021). https://doi.org/10.1063/5.0041984

    Article  CAS  Google Scholar 

  33. Yu. P. Korneeva, D. Yu. Vodolazov, A.V. Semenov, I.N. Florya, N. Simonov, E. Baeva, A.A. Korneev, G.N. Goltsman, T.M. Klapwijk, Phys. Rev. Appl. 9, 064037 (2018). https://doi.org/10.1103/9.064037

    Article  CAS  Google Scholar 

  34. I. Holzman, Y. Ivry, Adv. Quantum Technol. 2, 1800058 (2019). https://doi.org/10.1002/qute.201800058

    Article  CAS  Google Scholar 

  35. I.E. Zadeh, J. Chang, J.W.N. Los, S. Gyger, A.W. Elshaari, S. Steinhauer, S.N. Dorenbos, V. Zwiller, Appl. Phys. Lett. 118, 190502 (2021). https://doi.org/10.1063/5.0045990

    Article  CAS  Google Scholar 

  36. J. Chang, J.W.N. Los, J.O. Tenorio-Pearl, N. Noordzij, R. Gourgues, A. Guardiani, J.R. Zichi, S.F. Pereira, H.P. Urbach, V. Zwiller, S.N. Dorenbos, I.E. Zadeh, APL Photonics 6, 036114 (2021). https://doi.org/10.1063/5.0039772

    Article  CAS  Google Scholar 

  37. H. Shibata, K. Shimizu, H. Takesue, Y. Tokura, Opt. Lett. 40, 3428 (2015). https://doi.org/10.1364/OL.40.003428

    Article  CAS  Google Scholar 

  38. A.S. Mueller, B. Korzh, M. Runyan, E.E. Wollman, A.D. Beyer, J.P. Allmaras, A.E. Velasco, I. Craiciu, B. Bumble, R.M. Briggs, L. Narvaez, C. Pena, M. Spiropulu, M.D. Shaw, Optica 8, 1586 (2021). https://doi.org/10.1364/OPTICA.444108

    Article  Google Scholar 

  39. S. Steinhauer, S. Gyger, V. Zwiller, Appl. Phys. Lett. 118, 100501 (2021). https://doi.org/10.1063/5.0044057

    Article  CAS  Google Scholar 

  40. E.E. Wollman, V.B. Verma, A.E. Lita, W.H. Farr, M.D. Shaw, R.P. Mirin, S.W. Nam, Opt. Express 27, 35279 (2019). https://doi.org/10.1364/OE.27.035279

    Article  CAS  Google Scholar 

  41. S. Ferrari, C. Schuck, W. Pernice, Nanophotonics 7, 1725 (2018). https://doi.org/10.1515/nanoph-2018-0059

    Article  CAS  Google Scholar 

  42. S. Gyger, J. Zichi, L. Schweickert, A.W. Elshaari, S. Steinhauer, S.F. Covre da Silva, A. Rastelli, V. Zwiller, K.D. Jöns, C. Errando-Herranz, Nat. Commun. 12, 1408 (2021). https://doi.org/10.1038/s41467-021-21624-3

    Article  CAS  Google Scholar 

  43. R. Cheng, C.-L. Zou, X. Guo, S. Wang, X. Han, H.X. Tang, Nat. Commun. 10, 4104 (2019). https://doi.org/10.1038/s41467-019-12149-x

    Article  CAS  Google Scholar 

  44. B. Korzh, Q.-Y. Zhao, J.P. Allmaras, S. Frasca, T.M. Autry, E.A. Bersin, A.D. Beyer, R.M. Briggs, B. Bumble, M. Colangelo, G.M. Crouch, A.E. Dane, T. Gerrits, A.E. Lita, F. Marsili, G. Moody, C. Peña, E. Ramirez, J.D. Rezac, N. Sinclair, M.J. Stevens, A.E. Velasco, V.B. Verma, E.E. Wollman, S. Xie, D. Zhu, P.D. Hale, M. Spiropulu, K.L. Silverman, R.P. Mirin, S.W. Nam, A.G. Kozorezov, M.D. Shaw, K.K. Berggren, Nat. Photonics 14, 250 (2020). https://doi.org/10.1038/s41566-020-0589-x

    Article  CAS  Google Scholar 

  45. L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, X. Xie, AIP Adv. 3, 072135 (2013). https://doi.org/10.1063/1.4817581

    Article  CAS  Google Scholar 

  46. N. Calandri, Q.-Y. Zhao, D. Zhu, A. Dane, K.K. Berggren, Appl. Phys. Lett. 109, 152601 (2016). https://doi.org/10.1063/1.4963158

    Article  CAS  Google Scholar 

  47. H. Wu, C. Gu, Y. Cheng, X. Hu, Appl. Phys. Lett. 111, 062603 (2017). https://doi.org/10.1063/1.4997930

    Article  CAS  Google Scholar 

  48. Y. Cheng, C. Gu, X. Hu, Appl. Phys. Lett. 111, 062604 (2017). https://doi.org/10.1063/1.4985226

    Article  CAS  Google Scholar 

  49. J.P. Allmaras, A.G. Kozorezov, B.A. Korzh, K.K. Berggren, M.D. Shaw, Phys. Rev. Appl. 11, 034062 (2019). https://doi.org/10.1103/PhysRevApplied.11.034062

    Article  CAS  Google Scholar 

  50. D.Y. Vodolazov, Phys. Rev. Appl. 11, 014016 (2019). https://doi.org/10.1103/PhysRevApplied.11.014016

    Article  CAS  Google Scholar 

  51. I.E. Zadeh, J.W.N. Los, R.B.M. Gourgues, J. Chang, A.W. Elshaari, J.R. Zichi, Y.J. van Staaden, J.P.E. Swens, N. Kalhor, A. Guardiani, Y. Meng, K. Zou, S. Dobrovolskiy, A.W. Fognini, D.R. Schaart, D. Dalacu, P.J. Poole, M.E. Reimer, X. Hu, S.F. Pereira, V. Zwiller, S.N. Dorenbos, ACS Photonics 7, 1780 (2020). https://doi.org/10.1021/acsphotonics.0c00433

    Article  CAS  Google Scholar 

  52. M. Caloz, B. Korzh, E. Ramirez, C. Schönenberger, R.J. Warburton, H. Zbinden, M.D. Shaw, F. Bussières, J. Appl. Phys. 126, 164501 (2019). https://doi.org/10.1063/1.5113748

    Article  CAS  Google Scholar 

  53. M. Caloz, M. Perrenoud, C. Autebert, B. Korzh, M. Weiss, C. Schönenberger, R.J. Warburton, H. Zbinden, F. Bussières, Appl. Phys. Lett. 112, 061103 (2018). https://doi.org/10.1063/1.5010102

    Article  CAS  Google Scholar 

  54. A.J. Kerman, E.A. Dauler, W.E. Keicher, J.K.W. Yang, K.K. Berggren, G. Gol’tsman, B. Voronov, Appl. Phys. Lett. 88, 111116 (2006). https://doi.org/10.1063/1.2183810

    Article  CAS  Google Scholar 

  55. A. Korneev, P. Kouminov, V. Matvienko, G. Chulkova, K. Smirnov, B. Voronov, G.N. Gol’tsman, M. Currie, W. Lo, K. Wilsher, J. Zhang, W. Słysz, A. Pearlman, A. Verevkin, R. Sobolewski, Appl. Phys. Lett. 84, 5338 (2004). https://doi.org/10.1063/1.1764600

    Article  CAS  Google Scholar 

  56. S. Cherednichenko, N. Acharya, E. Novoselov, V. Drakinskiy, Supercond. Sci. Technol. 34, 044001 (2021). https://doi.org/10.1088/1361-6668/abdeda

    Article  Google Scholar 

  57. A. Vetter, S. Ferrari, P. Rath, R. Alaee, O. Kahl, V. Kovalyuk, S. Diewald, G.N. Goltsman, A. Korneev, C. Rockstuhl, W.H.P. Pernice, Nano Lett. 16, 7085 (2016). https://doi.org/10.1021/acs.nanolett.6b03344

    Article  CAS  Google Scholar 

  58. J. Münzberg, A. Vetter, F. Beutel, W. Hartmann, S. Ferrari, W.H.P. Pernice, C. Rockstuhl, Optica 5, 658 (2018). https://doi.org/10.1364/OPTICA.5.000658

    Article  Google Scholar 

  59. A.J. Kerman, J.K.W. Yang, R.J. Molnar, E.A. Dauler, K.K. Berggren, Phys. Rev. B 79, 100509(R) (2009). https://doi.org/10.1103/PhysRevB.79.100509

    Article  CAS  Google Scholar 

  60. J.K.W. Yang, A.J. Kerman, E.A. Dauler, V. Anant, K.M. Rosfjord, K.K. Berggren, IEEE Trans. Appl. Supercond. 17, 581 (2007). https://doi.org/10.1109/TASC.2007.898660

    Article  CAS  Google Scholar 

  61. L.X. You, X.F. Shen, Appl. Phys. Lett. 95, 152514 (2009). https://doi.org/10.1063/1.3250169

    Article  CAS  Google Scholar 

  62. Q. Zhao, T. Jia, M. Gu, C. Wan, L. Zhang, W. Xu, L. Kang, J. Chen, P. Wu, Opt. Lett. 39, 1869 (2014). https://doi.org/10.1364/OL.39.001869

    Article  Google Scholar 

  63. A.J. Kerman, D. Rosenberg, R.J. Molnar, E.A. Dauler, J. Appl. Phys. 113, 144511 (2013). https://doi.org/10.1063/1.4799397

    Article  CAS  Google Scholar 

  64. C. Lv, W. Zhang, L. You, P. Hu, H. Wang, H. Li, C. Zhang, J. Huang, Y. Wang, X. Yang, Z. Wang, X. Xie, AIP Adv. 8, 105018 (2018). https://doi.org/10.1063/1.5049549

    Article  Google Scholar 

  65. W. Zhang, J. Huang, C. Zhang, L. You, C. Lv, L. Zhang, H. Li, Z. Wang, X. Xie, IEEE Trans. Appl. Supercond. 29, 2200204 (2019). https://doi.org/10.1109/TASC.2019.2895621

    Article  CAS  Google Scholar 

  66. E.A. Dauler, M.E. Grein, A.J. Kerman, F. Marsili, S. Miki, S.W. Nam, M.D. Shaw, H. Terai, V.B. Verma, T. Yamashita, Opt. Eng. 53, 081907 (2014). https://doi.org/10.1117/1.OE.53.8.081907

    Article  CAS  Google Scholar 

  67. S. Miki, S. Miyajima, F. China, M. Yabuno, H. Terai, Opt. Lett. 46, 6015 (2021). https://doi.org/10.1364/OL.438416

    Article  Google Scholar 

  68. M.K. Akhlaghi, A.H. Majedi, Opt. Express 20, 1608 (2012). https://doi.org/10.1364/OE.20.001608

    Article  Google Scholar 

  69. S. Doerner, A. Kuzmin, S. Wuensch, M. Siegel, IEEE Trans. Appl. Supercond. 29, 2200404 (2019). https://doi.org/10.1109/TASC.2019.2894375

    Article  CAS  Google Scholar 

  70. P. Ravindran, R. Cheng, H. Tang, J.C. Bardin, Opt. Express 28, 4099 (2020). https://doi.org/10.1364/OE.383649

    Article  Google Scholar 

  71. L. Zhang, S. Zhang, X. Tao, G. Zhu, L. Kang, J. Chen, P. Wu, IEEE Trans. Appl. Supercond. 27, 2201206 (2017). https://doi.org/10.1109/TASC.2017.2654265

    Article  Google Scholar 

  72. E. Knehr, A. Kuzmin, S. Doerner, S. Wuensch, K. Ilin, H. Schmidt, M. Siegel, Appl. Phys. Lett. 117, 132602 (2020). https://doi.org/10.1063/5.0029697

    Article  CAS  Google Scholar 

  73. H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, J.-W. Pan, Science 370, 1460 (2020). https://doi.org/10.1126/science.abe8770

    Article  CAS  Google Scholar 

  74. F. Lecocq, F. Quinlan, K. Cicak, J. Aumentado, S.A. Diddams, J.D. Teufel, Nature 591, 575 (2021). https://doi.org/10.1038/s41586-021-03268-x

    Article  CAS  Google Scholar 

  75. F. Beutel, H. Gehring, M.A. Wolff, C. Schuck, W. Pernice, NPJ Quantum Inf. 7, 40 (2021). https://doi.org/10.1038/s41534-021-00373-7

    Article  Google Scholar 

  76. J. Rapp, Y. Ma, R.M.A. Dawson, V.K. Goyal, Optica 8, 30 (2021). https://doi.org/10.1364/OPTICA.403190

    Article  Google Scholar 

  77. G. Hong, A.L. Antaris, H. Dai, Nat. Biomed. Eng. 1, 0010 (2017). https://doi.org/10.1038/s41551-016-0010

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joshua C. Bienfang, Val Zwiller or Stephan Steinhauer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bienfang, J.C., Zwiller, V. & Steinhauer, S. Materials, devices, and systems for high-speed single-photon counting. MRS Bulletin 47, 494–501 (2022). https://doi.org/10.1557/s43577-022-00345-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43577-022-00345-y

Keywords

Navigation