Skip to main content
Log in

Overview and outlook of emerging non-volatile memories

  • Review Article
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Memory technologies with higher density, higher bandwidth, lower power consumption, higher speed, and lower cost are in high demand in the current big data era. In this paper, recent progress of emerging non-volatile memories is reviewed. The current status, challenges, and opportunities of emerging non-volatile memories, such as phase-change memory, resistive random-access memory, ferroelectric field-effect transistors, and magnetic random-access memory, are discussed toward storage-class memory, embedded non-volatile memories, and near/in-memory computing applications.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. M. Horowitz, ISSCC Tech. Dig. (2014), p. 10

  2. S. DeBoer, Symp. VLSI Technol. (2018), p. 3

  3. S. Salahuddin, K. Ni, S. Datta, The era of hyper-scaling in electronics. Nat. Electron. 1, 442 (2018)

    Article  Google Scholar 

  4. S. Lai, Tech. Dig. Int. Electron Devices Meet. (2003), p. 10

  5. R.F. Freitas, W.W. Wilcke, Storage-class memory: The next storage system technology. IBM J. Res. Dev. 52, 439 (2008)

    Article  Google Scholar 

  6. G. Servalli, Tech. Dig. Int. Electron Devices Meet. (2009), p. 113

  7. S. H. Lee, H.C. Park, M.S. Kim, H.W. Kim, M.R. Choi, H.G. Lee, J.W. Seo, S.C. Kim, S.G. Kim, S.B. Hong, S.Y. Lee, J.U. Lee, Y.S. Kim, K.S. Kim, J.I. Kim, M.Y. Lee, H.S. Shin, S.J. Chae, J.H. Song, H.S. Yoon, J.M. Oh, S.K. Min, H.M. Lee, K.R. Hong, J.T. Cheong, S.N. Park, J.C. Ku, Y.S. Sohn, S.K. Park, T.S. Kim, Y.K. Kim, K.W. Park, C.S. Han, W. Kim, H.J. Kim, K.S. Choi, J.H. Lee, S.J. Hong, Tech. Dig. Int. Electron Devices Meet. (2011), p. 47

  8. M.J. Kang, T.J. Park, Y.W. Kwon, D.H. Ahn, Y.S. Kang, H. Jeong, S.J. Ahn, Y.J. Song, B.C. Kim, S.W. Nam, H.K. Kang, G.T. Jeong, C.H. Chung, Tech. Dig. Int. Electron Devices Meet. (2011), p. 39

  9. Y. Choi, I. Song, M.-H. Park, H. Chung, S. Chang, B. Cho, J. Kim, Y. Oh, D. Kwon, J. Sunwoo, J. Shin, Y. Rho, C. Lee, M.G. Kang, J. Lee, Y. Kwon, S. Kim, J. Kim, Y.-J. Lee, Q. Wang, S. Cha, S. Ahn, H. Horii, J. Lee, K. Kim, H. Joo, K. Lee, Y.-T. Lee, J. Yoo, G. Jeong, ISSCC Tech. Dig. (2012), p. 46

  10. D. Kau, S. Tang, I.V Karpov, R. Dodge, B. Klehn, J.A. Kalb, J. Strand, A. Diaz, N. Leung, J. Wu, S. Lee, T. Langtry, K. Chang, C. Papagianni, J. Lee, J. Hirst, S. Erra, E. Flores, N. Righos, H. Castro, G. Spadini, Tech. Dig. Int. Electron Devices Meet. (2009), p. 617

  11. S.R. Ovshinsky, Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 21, 1450 (1968)

    Article  Google Scholar 

  12. S.R. Ovshinsky, H. Fritzsche, Amorphous semiconductors for switching, memory, and imaging applications. IEEE Trans. Electron Devices 20, 91 (1973)

    Article  CAS  Google Scholar 

  13. H.-Y. Cheng, F. Carta, W.-C. Chien, H.-L. Lung, M.J. BrightSky, 3D cross-point phase-change memory for storage-class memory. J. Phys. D 52, 473002 (2019)

    Article  CAS  Google Scholar 

  14. M.-J. Lee, D. Lee, H. Kim, H.-S. Choi, J.-B. Park, H.G. Kim, Y.-K. Cha, U.-I. Chung, I.-K. Yoo, K. Kim, Tech. Dig. Int. Electron Devices Meet. (2012), p. 33

  15. D. Garbin, W. Devulder, R. Degraeve, G.L. Donadio, S. Clima, K. Opsomer, A. Fantini, D. Cellier, W.G. Kim, M. Pakala, A. Cockburn, C. Detavernier, R. Delhougne, L. Goux, G.S. Kar, Tech. Dig. Int. Electron Devices Meet. (2019), p. 35.1.1

  16. H.Y. Cheng, W.C. Chien, I.T. Kuo, E.K. Lai, Y. Zhu, J.L. Jordan-Sweet, A. Ray, F. Carta, F.M. Lee, P.H. Tseng, M. H. Lee, Y.Y. Lin, W. Kim, R. Bruce, C.W. Yeh, C.H. Yang, M. BrightSky, H.L. Lung, Tech. Dig. Int. Electron Devices Meet. (2017), p. 28

  17. C.W. Yeh, W.C. Chien, R.L. Bruce, H.Y. Cheng, I.T. Kuo, C.H. Yang, A. Ray, H. Miyazoe, W. Kim, F. Carta, E.K. Lai, M. BrightSky, H.L. Lung, Symp. VLSI Technol. (2018), p. 205

  18. H.Y. Cheng, W.C. Chien, I.T. Kuo, C.W. Yeh, L. Gignac, W. Kim, E.K. Lai, Y.F. Lin, R.L. Bruce, C. Lavoie, C.W. Cheng, A. Ray, F.M. Lee, F. Carta, C.H. Yang, M.H. Lee, H.Y. Ho, M. BrightSky, H.L. Lung, Tech. Dig. Int. Electron Devices Meet. (2018), p. 37.3.1

  19. H.Y. Cheng, I.T. Kuo, W.C. Chien, C.W. Yeh, Y.C. Chou, N. Gong, L. Gignac, C.H. Yang, C.W. Cheng, C. Lavoie, M. Hopstaken, R.L. Bruce, L. Buzi, E.K. Lai, F. Carta, A. Ray, M.H. Lee, H.Y. Ho, W. Kim, M. BrightSky, H.L. Lung, Symp. VLSI Technol. (2020), p. TM1.6

  20. T. Kim, H. Choi, M. Kim, J. Yi, D. Kim, S. Cho, H. Lee, C. Hwang, E.-R. Hwang, J. Song, S. Chae, Y. Chun, J.-K. Kim, Tech. Dig. Int. Electron Devices Meet. (2018), p. 37.1.1

  21. A. Fazio, Tech. Dig. Int. Electron Devices Meet. (2020), p. 24.1.1

  22. T.W. Hickmott, Low-frequency negative resistance in thin anodic oxide films. J. Appl. Phys. 33, 2669 (1962)

    Article  CAS  Google Scholar 

  23. H.-S.P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F.T. Chen, M.-J. Tsai, “Metal–Oxide RRAM.” Proc. IEEE. 100, 1951 (2012)

    Article  CAS  Google Scholar 

  24. M.N. Kozicki, M. Park, M. Mitkova, Nanoscale memory elements based on solid-state electrolytes. IEEE Trans. Nanotechnol. 4, 331 (2005)

    Article  Google Scholar 

  25. E. Wu, T. Ando, B. Li, R. Southwick, J. Stathis, Fundamental roles of extreme-value distributions in dielectric breakdown and memory applications (minimum-value versus maximum-value statistics). Jpn. J. Appl. Phys. 59, 0803 (2020)

    Article  Google Scholar 

  26. R. Waser, R. Dittmann, G. Staikov, K. Szot, Redox-based resistive switching memories–nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632 (2009)

    Article  CAS  Google Scholar 

  27. I.G. Baek, C.J. Park, H. Ju, D.J. Seong, H.S. Ahn, J.H. Kim, M.K. Yang, S.H. Song, E.M. Kim, S.O. Park, C.H. Park, C.W. Song, G.T. Jeong, S. Choi, H.K. Kang, C. Chung, Tech. Dig. Int. Electron Devices Meet. (2011), p. 31.8.1

  28. H.W. Pan, K.P. Huang, S.Y. Chen, P.C. Peng, Z.S. Yang, C.-H. Kuo, Y.-D. Chih, Y.-C. King, C.J. Lin, Tech. Dig. Int. Electron Devices Meet. (2015), p. 10.5.1

  29. O. Golonzka, U. Arslan, P. Bai, M. Bohr, O. Baykan, Y. Chang, A. Chaudhari, A. Chen, J. Clarke, C. Connor, N. Das, C. English, T. Ghani, F. Hamzaoglu, P. Hentges, P. Jain, C. Jezewski, I. Karpov, H. Kothari, R. Kotlyar, B. Lin, M. Metz, J. Odonnell, D. Ouellette, J. Park, A. Pirkle, P. Quintero, D. Seghete, M. Sekhar, A. Sen Gupta, M. Seth, N. Strutt, C. Wiegand, H.J. Yoo, K. Fischer, Symp. VLSI Technol. (2019), p. T230

  30. T. Gokmen, Y. Vlasov, Acceleration of deep neural network training with resistive cross-point devices: Design considerations. Front. Neurosci. 10, 333 (2016)

    Article  Google Scholar 

  31. N. Gong, T. Idé, S. Kim, I. Boybat, A. Sebastian, V. Narayanan, T. Ando, Signal and noise extraction from analog memory elements for neuromorphic computing. Nat. Commun. 9, 1 (2018)

    Article  CAS  Google Scholar 

  32. T. Gokmen, W. Haensch, Algorithm for training neural networks on resistive device arrays. Front. Neurosci. 14, 103 (2020)

    Article  Google Scholar 

  33. H. Kim, M. Rasch, T. Gokmen, T. Ando, H. Miyazoe, J.-J. Kim, J. Rozen, S. Kim, Zero-shifting technique for deep neural network training on resistive cross-point arrays. Preprint, arXiv:1907.10228 (2019)

  34. I.M. Ross, Semiconductive translating device, US Patent 2,791,760 (1957)

  35. H. Ishiwara, Current status and prospects of FET-type ferroelectric memories. FED J. 11, 27 (2000)

    CAS  Google Scholar 

  36. T.P. Ma, J.-P. Han, Why is nonvolatile ferroelectric memory field-effect transistor still elusive? IEEE Electron Device Lett. 23, 386 (2002)

    Article  CAS  Google Scholar 

  37. T.S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, U. Böttger, Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 99, 102903 (2011)

    Article  CAS  Google Scholar 

  38. J. Muller, T.S. Boscke, U. Schroder, S. Mueller, D. Brauhaus, U. Bottger, L. Frey, T. Mikolajick, Ferroelectricity in simple binary ZrO2 and HfO2. Nano Lett. 12, 4318 (2012)

    Article  CAS  Google Scholar 

  39. S. Dunkel, M. Trentzsch, R. Richter, P. Moll, C. Fuchs, O. Gehring, M. Majer, S. Wittek, B. Muller, T. Melde, H. Mulaosmanovic, S. Slesazeck, S. Muller, J. Ocker, M. Noack, D.-A. Lohr, P. Polakowski, J. Muller, T. Mikolajick, J. Hontschel, B. Rice, J. Pellerin, S. Beyer, Tech. Dig. Int. Electron Devices Meet. (2017), p. 19.7.1

  40. X. Tian, S. Shibayama, T. Nishimura, T. Yajima, S. Migita, A. Toriumi, Evolution of ferroelectric HfO2 in ultrathin region down to 3 nm. Appl. Phys. Lett. 112, 102902 (2018)

    Article  CAS  Google Scholar 

  41. X. Lyu, M. Si, X. Sun, M.A. Capano, H. Wang, P.D. Ye, Symp. VLSI Technol. (2019), p. T44

  42. S.S. Cheema, D. Kwon, N. Shanker, R. dos Reis, S.-L. Hsu, J. Xiao, H. Zhang, R. Wagner, A. Datar, M.R. McCarter, C.R. Serrao, A.K. Yadav, G. Karbasian, C.-H. Hsu, A.J. Tan, L.-C. Wang, V. Thakare, X. Zhang, A. Mehta, E. Karapetrova, R.V. Chopdekar, P. Shafer, E. Arenholz, C. Hu, R. Proksch, R. Ramesh, J. Ciston, S. Salahuddin, Enhanced ferroelectricity in ultrathin films grown directly on silicon. Nature 580, 478 (2020)

    Article  CAS  Google Scholar 

  43. T.S. Boscke, J. Muller, D. Brauhaus, U. Schroder, U. Bottger, Tech. Dig. Int. Electron Devices Meet. (2011), p. 24.5.1

  44. N. Gong, T.-P. Ma, IEEE Electron Device Lett. 37, 1123 (2016)

    Article  CAS  Google Scholar 

  45. W. Chung, M. Si, P.R. Shrestha, J.P. Campbell, K.P. Cheung, P. D. Ye, Symp. VLSI Technol. (2018), p. 89

  46. M. Si, X. Lyu, P.R. Shrestha, X. Sun, H. Wang, K.P. Cheung, P.D. Ye, Ultrafast measurements of polarization switching dynamics on ferroelectric and anti-ferroelectric hafnium zirconium oxide. Appl. Phys. Lett. 115, 72107 (2019)

    Article  CAS  Google Scholar 

  47. X. Lyu, M. Si, P.R. Shrestha, K.P. Cheung, P.D. Ye, Tech. Dig. Int. Electron Devices Meet. (2019), p. 15.2.1

  48. Y.-C. Chiu, C.-H. Cheng, C.-Y. Chang, M.-H. Lee, H.-H. Hsu, S.-S. Yen, Symp. VLSI Technol. (2015), p. T184

  49. J. Muller, T.S. Boscke, U. Schroder, R. Hoffmann, T. Mikolajick, L. Frey, Nanosecond polarization switching and long retention in a novel MFIS-FET based on ferroelectric HfO2. IEEE Electron Device Lett. 33, 185 (2012)

    Article  CAS  Google Scholar 

  50. E. Yurchuk, J. Muller, J. Paul, T. Schlosser, D. Martin, R. Hoffmann, S. Mueller, S. Slesazeck, U. Schroeder, R. Boschke, R. van Bentum, T. Mikolajick, Impact of scaling on the performance of HfO2-based ferroelectric field effect transistors. IEEE Trans. Electron Devices 61, 3699 (2014)

    Article  CAS  Google Scholar 

  51. K. Ni, P. Sharma, J. Zhang, M. Jerry, J.A. Smith, K. Tapily, R. Clark, S. Mahapatra, S. Datta, Critical role of interlayer in Hf0.5Zr0.5O2 ferroelectric FET nonvolatile memory performance. IEEE Trans. Electron Devices 65, 2461 (2018)

  52. M. Si, X. Lyu, P.D. Ye, Ferroelectric polarization switching of hafnium zirconium oxide in a ferroelectric/dielectric stack. ACS Appl. Electron. Mater. 1, 745 (2019)

    Article  CAS  Google Scholar 

  53. M. Si, Z. Lin, J. Noh, J. Li, W. Chung, D.Y. Peide, The impact of channel semiconductor on the memory characteristics of ferroelectric field-effect transistors. IEEE J. Electron Devices Soc. 8, 846 (2020)

    Article  CAS  Google Scholar 

  54. M. Si, P.D. Ye, The critical role of charge balance on the memory characteristics of ferroelectric field-effect transistors. IEEE Trans. Electron Devices 68, 5108 (2021)

  55. K. Toprasertpong, M. Takenaka, S. Takagi, Tech. Dig. Int. Electron Devices Meet. (2019), p. 23.7.1

  56. M. Si, J. Andler, X. Lyu, C. Niu, S. Datta, R. Agrawal, P.D. Ye, Indium–tin-oxide transistors with one nanometer thick channel and ferroelectric gating. ACS Nano 14, 11542 (2020)

    Article  CAS  Google Scholar 

  57. A.A. Sharma, B. Doyle, H.J. Yoo, I.-C. Tung, J. Kavalieros, M.V Metz, M. Reshotko, P. Majhi, T. Brown-Heft, Y.-J. Chen, V.H. Le, Tech. Dig. Int. Electron Devices Meet. (2020), p. 18.5.1

  58. S. Dutta, H. Ye, W. Chakraborty, Y.-C. Luo, M.S. Jose, B. Grisafe, A. Khanna, I. Lightcap, S. Shinde, S. Yu, S. Datta, Tech. Dig. Int. Electron Devices Meet. (2020), p. 36.4.1

  59. K. Florent, S. Lavizzari, L. Di Piazza, M. Popovici, E. Vecchio, G. Potoms, G. Groeseneken, J. Van IHoudt, Symp. VLSI Technol. (2017), p. T158

  60. M.-K. Kim, I.-J. Kim, J.-S. Lee, CMOS-compatible ferroelectric NAND flash memory for high-density, low-power, and high-speed three-dimensional memory. Sci. Adv. 7, eabe1341 (2021)

    Article  CAS  Google Scholar 

  61. M. Jerry, P.-Y. Chen, J. Zhang, P. Sharma, K. Ni, S. Yu, S. Datta, Tech. Dig. Int. Electron Devices Meet. (2017), p. 6.2.1

  62. W. Chung, M. Si, P.D. Ye, Tech. Dig. Int. Electron Devices Meet. (2018), p. 15.2.1

  63. Z. Wang, B. Crafton, J. Gomez, R. Xu, A. Luo, Z. Krivokapic, L. Martin, S. Datta, A. Raychowdhury, A.I. Khan, Tech. Dig. Int. Electron Devices Meet. (2018), p. 13.3.1

  64. A. Keshavarzi, K. Ni, W. Van Den Hoek, S. Datta, A. Raychowdhury, Ferroelectronics for edge intelligence. IEEE Micro 40, 33 (2020)

    Article  Google Scholar 

  65. J.C. Slonczewski, Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier. Phys. Rev. B 39, 6995 (1989)

    Article  CAS  Google Scholar 

  66. J.C. Slonczewski, Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1 (1996)

    Article  CAS  Google Scholar 

  67. L. Berger, Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353 (1996)

    Article  CAS  Google Scholar 

  68. J.Z. Sun, Current-driven magnetic switching in manganite trilayer junctions. J. Magn. Magn. Mater. 202, 157 (1999)

    Article  CAS  Google Scholar 

  69. J.A. Katine, F.J. Albert, R.A. Buhrman, E.B. Myers, D.C. Ralph, Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars. Phys. Rev. Lett. 84, 3149 (2000)

    Article  CAS  Google Scholar 

  70. T. Miyazaki, N. Tezuka, Giant magnetic tunneling effect in Fe/Al2O3/Fe junction. J. Magn. Magn. Mater. 139, L231 (1995)

    Article  CAS  Google Scholar 

  71. J.S. Moodera, L.R. Kinder, T.M. Wong, R. Meservey, Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74, 3273 (1995)

    Article  CAS  Google Scholar 

  72. W.H. Butler, X.-G. Zhang, T.C. Schulthess, J.M. MacLaren, Spin-dependent tunneling conductance of Fe|MgO|Fe sandwiches. Phys. Rev. B 63, 54416 (2001)

    Article  CAS  Google Scholar 

  73. S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, K. Ando, Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 3, 868 (2004)

    Article  CAS  Google Scholar 

  74. S.S.P. Parkin, C. Kaiser, A. Panchula, P.M. Rice, B. Hughes, M. Samant, S.-H. Yang, Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 3, 862 (2004)

    Article  CAS  Google Scholar 

  75. S. Ikeda, J. Hayakawa, Y. Ashizawa, Y.M. Lee, K. Miura, H. Hasegawa, M. Tsunoda, F. Matsukura, H. Ohno, Tunnel magnetoresistance of 604% at 300 K by suppression of Ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature. Appl. Phys. Lett. 93, 82508 (2008)

    Article  CAS  Google Scholar 

  76. J.Z. Sun, Spin-current interaction with a monodomain magnetic body: A model study. Phys. Rev. B. 62, 570 (2000)

    Article  CAS  Google Scholar 

  77. D.C. Worledge, G. Hu, P.L. Trouilloud, D.W. Abraham, S. Brown, M.C. Gaidis, J. Nowak, E.J. O’Sullivan, R.P. Robertazzi, J.Z. Sun, W.J. Gallagher, Tech. Dig. Int. Electron Devices Meet. (2010), p. 12.5.1

  78. S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H.D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, H. Ohno, A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. Nat. Mater. 9, 721 (2010)

    Article  CAS  Google Scholar 

  79. D.C. Worledge, G. Hu, D.W. Abraham, J.Z. Sun, P.L. Trouilloud, J. Nowak, S. Brown, M.C. Gaidis, E.J. O’sullivan, R.P. Robertazzi, Spin torque switching of perpendicular Ta∣CoFeB∣MgO-based magnetic tunnel junctions. Appl. Phys. Lett. 98, 22501 (2011)

    Article  CAS  Google Scholar 

  80. G. Hu, T. Topuria, P.M. Rice, J. Jordan-Sweet, D.C. Worledge, Optimization of tunneling magnetoresistance in perpendicular magnetic tunnel junctions with Co|Pd reference layers. IEEE Magn. Lett. 4, 3000104 (2013)

    Article  CAS  Google Scholar 

  81. G. Hu, D. Kim, J. Kim, C. Kothandaraman, G. Lauer, H.K. Lee, N. Marchack, M. Reuter, R.P. Robertazzi, J.Z. Sun, T. Suwannasiri, J.J. Nowak, P.L. Trouilloud, S. Woo, D.C. Worledge, M.G. Gottwald, S.L. Brown, B. Doris, C.P. D’Emic, P. Hashemi, D. Houssameddine, Q. He, Tech. Dig. Int. Electron Devices Meet. (2019), p. 2.6.1

  82. E.R.J. Edwards, G. Hu, S.L. Brown, C.P. D’Emic, M.G. Gottwald, P. Hashemi, H. Jung, J. Kim, G. Lauer, J.J. Nowak, J.Z. Sun, T. Suwannasiri, P.L. Trouilloud, S. Woo, D.C. Worledge, Tech. Dig. Int. Electron Devices Meet. (2020), p. 24.4.1

  83. H. Honjo, T.V.A. Nguyen, T. Watanabe, T. Nasuno, C. Zhang, T. Tanigawa, S. Miura, H. Inoue, M. Niwa, T. Yoshiduka, Y. Noguchi, M. Yasuhira, A. Tamakoshi, M. Natsui, Y. Ma, H. Koike, Y. Takahashi, K. Furuya, H. Shen, S. Fukami, H. Sato, S. Ikeda, T. Hanyu, H. Ohno, T. Endoh, Tech. Dig. Int. Electron Devices Meet. (2019), p. 28.5.1

  84. K. Garello, F. Yasin, H. Hody, S. Couet, L. Souriau, S.H. Sharifi, J. Swerts, R. Carpenter, S. Rao, W. Kim, J. Wu, K.K.V. Sethu, M. Pak, N. Jossart, D. Crotti, A. Furnemont, G.S. Kar, Symp. VLSI Technol. (2019), p. T194

  85. M. Wang, W. Cai, D. Zhu, Z. Wang, J. Kan, Z. Zhao, K. Cao, Z. Wang, Y. Zhang, T. Zhang, C. Park, J.-P. Wang, A. Fert, W. Zhao, Field-free switching of a perpendicular magnetic tunnel junction through the interplay of spin–orbit and spin-transfer torques. Nat. Electron. 1, 582 (2018)

    Article  Google Scholar 

  86. N. Sato, G.A. Allen, W.P. Benson, B. Buford, A. Chakraborty, M. Christenson, T.A. Gosavi, P.E. Heil, N.A. Kabir, B.J. Krist, K.P. O’Brien, K. Oguz, R.R. Patil, J. Pellegren, A.K. Smith, E.S. Walker, P. J. Hentges, M.V. Metz, M. Seth, B. Turkot, C.J. Wiegand, H.J. Yoo, I.A. Young, Symp. VLSI Technol. (2020), p. 1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peide D. Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Si, M., Cheng, HY., Ando, T. et al. Overview and outlook of emerging non-volatile memories. MRS Bulletin 46, 946–958 (2021). https://doi.org/10.1557/s43577-021-00204-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43577-021-00204-2

Keywords

Navigation