Skip to main content
Log in

Influence of Boron on the Precipitation Kinetics in Advanced Ultra-High Strength Steels

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

In the present work, the stress relaxation method was employed to determine the influence of B addition on the kinetics of strain-induced precipitation and its interaction with the static austenite recrystallization. For this purpose, the behavior of two low carbon advanced ultra-high strength steels was analyzed during stress relaxation tests at different temperatures and constant pre-strain rate. The precipitation start (Ps) and finish (Pf) times were determined from the relaxation curves and then the corresponding precipitation-time-temperature diagrams were constructed for each steel. Transmission Electron Microscopy was used to determine the chemical nature and evolution of precipitation. In general, the results show that the addition of B retards the austenite recrystallization, tends to accelerate the precipitation kinetics of carbonitrides and leads to a finer and denser distribution of precipitates. These results are discussed in terms of the driving force for the nucleation of precipitation, which in turn is controlled by the degree of supersaturation of microalloying element and as a function of B segregation and B-vacancy complexes to dislocations and grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Committee on Automotive Applications, International Iron & Steel Institute, Advanced High Strength Steel Application Guidelines, pp. 1–13 (2009).

    Google Scholar 

  2. R.D.K. Misra, G.C. Weatherly, J.E. Hartmann and A.J. Boucek, Mater. Sci. Technol. 17, 1119–1129 (2001).

    Article  CAS  Google Scholar 

  3. B. Dutta, E.J. Palmiere and C.M. Sellars, Acta Mater. 49, 785–794 (2001).

    Article  CAS  Google Scholar 

  4. E.J. Palmiere, C.I. Garcia and A.J. DeArdo, Metall. Mater. Trans. 25A, 277–286 (1994).

    Article  CAS  Google Scholar 

  5. B. Dutta, E. Valdes and C.M. Sellars, Acta Metall. Mater. 40, 653–662 (1992).

    Article  CAS  Google Scholar 

  6. R. Simoneau, G. Begin and A.H. Marquis, Metal. Sci. 12, 381–386 (1978).

    Article  CAS  Google Scholar 

  7. I. Weiss and J.J. Jonas, Metall. Trans. 10A, 831–840 (1979).

    Article  CAS  Google Scholar 

  8. M.G. Akben, I. Weiss and J.J. Jonas, Acta Metall. 29, 111–121 (1981).

    Article  CAS  Google Scholar 

  9. M.G. Akben, T. Chandra, P. Plassiard and J.J. Jonas, Acta Metall. 32, 591–601 (1984).

    Article  CAS  Google Scholar 

  10. B. Dutta and C.M. Sellars, Mater. Sci. Technol. 3, 197–205 (1987).

    Article  CAS  Google Scholar 

  11. W.J. Liu and J.J. Jonas, Metall. Trans. 19A, 1403–1413 (1988).

    Article  CAS  Google Scholar 

  12. W.J. Liu and J.J. Jonas, Metall. Trans. 20A, 689–697 (1989).

    Article  CAS  Google Scholar 

  13. S.S. Hansen, J.B. Vander Sande and M. Cohen, Metall. Trans. 11A, 387–402 (1980).

    Article  CAS  Google Scholar 

  14. M. Djahazi, X.L. He, J.J. Jonas and W.P. Sun, Metall. Trans. 23A, 2111–2120 (1992).

    Article  CAS  Google Scholar 

  15. S.F. Medina, Mater. Sci. 32, 1487–1492 (1997).

    Article  CAS  Google Scholar 

  16. A. Pandit, A. Murugaiyan, A.S. Podder, A. Haldar, D. Bhattacharjee, S. Chandra and R.K. Ray, Scripta Mater. 53, 1309–1314 (2005).

    Article  CAS  Google Scholar 

  17. J.J. Jonas and I. Weiss, Met. Sci. 13, 238–245 (1979).

    Article  CAS  Google Scholar 

  18. A. Lebon, J. Rofes-Vernis and C. Rossard, Met. Sci. 9, 36–40 (1975).

    Article  CAS  Google Scholar 

  19. M. Djahazi, X. He and J.J. Jonas, Mater. Sci. Technol. 8, 628–636 (1992).

    Article  CAS  Google Scholar 

  20. M. Jahazi and J.J. Jonas, Mater. Sci. Eng. A 335, 49–61 (2002).

    Article  CAS  Google Scholar 

  21. X.L. He, M. Djahazi, J.J. Jonas and J. Jackman, Acta Metall. 39, 2295–2308 (1991).

    Article  CAS  Google Scholar 

  22. X.M. Wang and X.L. He, ISIJ Int. 42, 38–46 (2002).

    Article  Google Scholar 

  23. S. Shanmugam, M. Tanniru, R.D. Misra, D. Panda and S. Jansto, Mater. Sci. Technol. 21, 165–177 (2005).

    Article  CAS  Google Scholar 

  24. S. Shanmugam, M. Tanniru, R.D. Misra, D. Panda and S. Jansto, Mater. Sci. Technol. 21, 883–892 (2005).

    Article  CAS  Google Scholar 

  25. C.P. Reip, S. Shanmugam and R.D. Misra, Mater. Sci. Eng. A 424, 307–317 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

G. Altamirano would like to thank CONACYT (México) for the scholarship support during this project. Authors also acknowledge CMEM-UPC (Spain), for the support and technical assistance in this research work. Funding was obtained through project CICYT- MAT2008-06793-C02-01 (Spain) and CIC-UMSNH-1.8 (México).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altamirano, G., Mejía, I., Hernández-Expósito, A. et al. Influence of Boron on the Precipitation Kinetics in Advanced Ultra-High Strength Steels. MRS Online Proceedings Library 1765, 91–96 (2015). https://doi.org/10.1557/opl.2015.812

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2015.812

Navigation