Skip to main content

Advertisement

Log in

Increasing Energy Storage in Activated Carbon based Electrical Double Layer Capacitors through Plasma Processing

  • Articles
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We present a methodology to enhance the electrical capacitance of activated carbon (AC) electrodes based on the introduction of electrically charged defects through argon plasma processing. Extensive characterization using electrochemical techniques incorporating cyclic voltammetry, constant current charge/discharge, and electrical impedance spectroscopy indicated a close to seven-fold increase in capacitance with respect to untreated AC electrodes, not subject to plasma processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chmiola, J., Yushin, G., Gogotsi, Y., Portet, C., Simon, P., & Taberna, P. L. (2006). Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science, 313(5794), 1760–1763.

    Article  CAS  Google Scholar 

  2. Karakaya, M., Zhu, J., Raghavendra, A. J., Podila, R., Parler Jr, S. G., Kaplan, J. P., & Rao, A. M. (2014). Roll-to-roll production of spray coated N-doped carbon nanotube electrodes for supercapacitors. Applied Physics Letters,105(26), 263103.

  3. Okajima, K., Ohta, K., & Sudoh, M. (2005). Capacitance behavior of activated carbon fibers with oxygen-plasma treatment. Electrochimica Acta, 50(11), 2227–2231.

  4. Hoefer, M., & Bandaru, P. (2013). Electrochemical Characteristics of Closely Spaced Defect Tuned Carbon Nanotube Arrays. Journal of The Electrochemical Society, 160(6), H360–H367.

    Article  CAS  Google Scholar 

  5. Narayanan, R., Yamada, H., Karakaya, M., Podila, R., Rao, A. M., & Bandaru, P. R. (2015). Modulation of the electrostatic and quantum capacitances of few layered graphenes through plasma processing. Nano letters. DOI: 10.1021/acs.nanolett.5b00055

  6. Xu, G., Zheng, C., Zhang, Q., Huang, J., Zhao, M., Nie, J., ... & Wei, F. (2011). Binder-free activated carbon/carbon nanotube paper electrodes for use in supercapacitors. Nano Research, 4(9), 870–881.

    Article  CAS  Google Scholar 

  7. Stoller, M. D., & Ruoff, R. S. (2010). Best practice methods for determining an electrode material’s performance for ultracapacitors. Energy & Environmental Science, 3(9), 1294–1301.

    Article  CAS  Google Scholar 

  8. Conway, B. E. (1999). Electrochemical supercapacitors. 53 – 57, 486 – 496.

  9. Bard, A. J., & Faulkner, L. R. (2001). Electrochemical methods: principles and applications. Electrochemical Methods: Principles and Applications. 386 – 428.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muriel, M.L., Narayanan, R. & Bandaru, P.R. Increasing Energy Storage in Activated Carbon based Electrical Double Layer Capacitors through Plasma Processing. MRS Online Proceedings Library 1773, 15–20 (2015). https://doi.org/10.1557/opl.2015.573

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2015.573

Navigation