Skip to main content
Log in

Electron Beam Effects during In-Situ Annealing of Self-Ion Irradiated Nanocrystalline Nickel

  • Articles
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Transmission electron microscopy (TEM) is a valuable methodology for investigating radiation-induced microstructural changes and elucidating the underlying mechanisms involved in the aging and degradation of nuclear reactor materials. However, the use of electrons for imaging may result in several inadvertent effects that can potentially change the microstructure and mechanisms active in the material being investigated. In this study, in situ TEM characterization is performed on nanocrystalline nickel samples under self-ion irradiation and post irradiation annealing. During annealing, voids are formed around 200 °C only in the area illuminated by the electron beam. Based on diffraction patterns analyses, it is hypothesized that the electron beam enhanced the growth of a NiO layer resulting in a decrease of vacancy mobility during annealing. The electron beam used to investigate self-ion irradiation ultimately significantly affected the type of defects formed and the final defect microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Sassoli de Bianchi, Foundations of Science 18 2, 213–243 (2013).

    Article  Google Scholar 

  2. R. F. Egerton, P. Li and M. Malac, Micron 35 6, 399–409 (2004).

    Article  CAS  Google Scholar 

  3. D. B. Williams and C. B. Carter, Transmission Electron Microscopy, 2nd ed. (Springer, 2009).

  4. S. Rajasekhar, K. J. Ganesh, K. Hartar, J. A. Knapp and P. J. Ferreira, Scripta Materialia 67(2), 189–192(2012).

  5. L.N. Brewer, D.M. Follstaedt, K. Hartar, J.A. Knapp, M.A. Rodriguez, and I.M. Robertson, Advanced Materials 22 10, 1161–1164 (2010).

    Article  CAS  Google Scholar 

  6. K. Hartar, D. C. Bufford and D. L. Buller, Nuclear Instruments & Methods in Physics Research Section B 338, 56–65 (2014).

    Article  Google Scholar 

  7. J. F. Ziegler, M. D. Ziegler and J. P. Biersack, Nuclear Instruments & Methods in Physics Research Section B 268 (11–12), 1818–1823 (2010).

  8. M. Li, M. A. Kirk, P. M. Baldo, D. Xu and B. D. Wirth, Philosophical Magazine 92 (16), 2048–2078(2012).

  9. I. M. Robertson, J. S. Vetrano, M. A. Kirk and M. L. Jenkins, Philosophical Magazine A 63(2), 299–318(1991).

  10. N. Yoshida, T. Muroga, H. Watanabe, K. Araki and Y. Miyamoto, Journal of Nuclear Materials 155157, 1222–1226 (1988).

  11. I. Jencic, M. W. Bench, I. M. Robertson and M. A. Kirk, Journal of Applied Physics 78 2, 974–982 (1995).

    Article  CAS  Google Scholar 

  12. P. G. Lucasson and R. M. Walker, Discussions of the Faraday Society 31, 57–66 (1961).

    Article  Google Scholar 

  13. W. Li, M. J. Stirniman and S. J. Sibener, Journal of Vacuum Science & Technology A 13 (3), 1574–1578(1995).

  14. C. M. Wang, D. R. Baer, J. E. Amonette, M. H. Engelhard, J. J. Antony and Y. Qiang, Ultramicroscopy 108 1, 43–51 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muntifering, B., Dingreville, R., Hattar, K. et al. Electron Beam Effects during In-Situ Annealing of Self-Ion Irradiated Nanocrystalline Nickel. MRS Online Proceedings Library 1809, 3 (2015). https://doi.org/10.1557/opl.2015.499

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/opl.2015.499

Navigation