Skip to main content
Log in

Colloidal PbS Nanosheets with Tunable Energy Gaps

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Ultrathin colloidal PbS nanosheets are synthesized using organometallic precursors with chloroalkane cosolvents, resulting in tunable thicknesses ranging from 1.2 nm to 4.6 nm. We report the first thickness-dependent photoluminescence spectra from lead-salt nanosheets. The one-dimensional confinement energy of these quasi-two-dimensional nanosheets is found to be proportional to 1/L instead of 1/L2 (L is the thickness of the nanosheet), which is consistent with results calculated using density functional theory as well as tight-binding theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luther J. M.; Law M.; Beard M. C.; Song Q.; Reese M. O.; Ellingson R. J.; Nozik A. J. Schottky solar cells based on colloidal nanocrystal films. Nano Lett. 2008, 8, 3488–3492.

    Article  CAS  Google Scholar 

  2. Choi J. J.; Lim Y. F.; Santiago-Berrios M. B.; Oh M.; Hyun B. R.; Sun L.; Bartnik A. C.; Goedhart A.; Malliaras G. G.; Abruna H. D.; Wise F. W.; Hanrath T. PbSe nanocrystal excitonic solar cells. Nano Lett. 2009, 9, 3749–3755.

    Article  CAS  Google Scholar 

  3. Sun L.; Choi J. J.; Stachnik D.; Bartnik A. C.; Hyun B.; Malliaras G. G.; Hanrath T.; Wise F. W. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control. Nat Nano 2012, 7, 369–373.

    Article  CAS  Google Scholar 

  4. Kovalenko M. V.; Scheele M.; Talapin D. V. Colloidal nanocrystals with molecular metal chalcogenide surface ligands. Science 2009, 324, 1417–1420.

    Article  CAS  Google Scholar 

  5. Tang J.; Kemp K. W.; Hoogland S.; Jeong K. S.; Liu H.; Levina L.; Furukawa M.; Wang X.; Debnath R.; Cha D.; Chou K. W.; Fischer A.; Amassian A.; Asbury J. B.; Sargent E. H. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat. Mater. 2011, 10, 765–771.

    Article  CAS  Google Scholar 

  6. Zhang H.; Hu B.; Sun L.; Hovden R.; Wise F. W.; Muller D. A.; Robinson R. D. Surfactant Ligand Removal and Rational Fabrication of Inorganically Connected Quantum Dots. Nano Lett. 2011, 11, 5356–5361.

    Article  CAS  Google Scholar 

  7. Schliehe C.; Juarez B. H.; Pelletier M.; Jander S.; Greshnykh D.; Nagel M.; Meyer A.; Foerster S.; Kornowski A.; Klinke C.; Weller H. Ultrathin PbS sheets by two-dimensional oriented attachment. Science 2010, 329, 550–553.

    Article  CAS  Google Scholar 

  8. Acharya S.; Das B.; Thupakula U.; Ariga K.; Sarma D. D.; Israelachvili J.; Golan Y. A Bottom-Up Approach toward Fabrication of Ultrathin PbS Sheets. Nano Lett. 2013, 13, 409–415.

    Article  CAS  Google Scholar 

  9. Dogan S.; Bielewicz T.; Cai Y.; Klinke C. Field–effect transistors made of individual colloidal PbS nanosheets. Appl. Phys. Lett. 2012, 101, 073102.

    Article  Google Scholar 

  10. Nagel M.; Hickey S. G.; Frömsdorf A.; Kornowski A.; Horst W. Synthesis of Monodisperse PbS Nanoparticles and Their Assembly into Highly Ordered 3D Colloidal Crystals. Zeitschrift für Physikalische Chemie 2009, 221, 427.

    Article  Google Scholar 

  11. Hines M. A.; Scholes G. D. Colloidal PbS Nanocrystals with Size-Tunable Near-Infrared Emission: Observation of Post-Synthesis Self-Narrowing of the Particle Size Distribution. Adv Mater 2003, 15, 1844–1849.

    Article  CAS  Google Scholar 

  12. Bhandari G. B.; Subedi K.; He Y.; Jiang Z.; Leopold M.; Reilly N.; Lu H. P.; Zayak A. T.; Sun L. Thickness-Controlled Synthesis of Colloidal PbS Nanosheets and Their Thickness-Dependent Energy Gaps. Chem. Mater. 2014, 26, 5433–5436.

    Article  CAS  Google Scholar 

  13. Bastard G.; Brum J. A. Electronic states in semiconductor heterostructures. Quantum Electronics, IEEE Journal of 1986, 22, 1625–1644.

    Article  Google Scholar 

  14. Alivisatos A. P. Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science 1996, 271, 933–937.

    Article  CAS  Google Scholar 

  15. Chemla D. S.; Miller D. A. B.; Smith P. W.; Gossard A. C.; Wiegmann W. Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures. Quantum Electronics, IEEE Journal of 1984, 20, 265–275.

    Article  Google Scholar 

  16. Schmitt-Rink S.; Chemla D. S.; Miller D. A. B. Linear and nonlinear optical properties of semiconductor quantum wells. Adv. Phys. 1989, 38, 89–188.

    Article  CAS  Google Scholar 

  17. Bartnik A. C.; Efros A. L.; Koh W. K.; Murray C. B.; Wise F. W. Electronic states and optical properties of PbSe nanorods and nanowires. Phys. Rev. B 2010, 82, 195313.

    Article  Google Scholar 

  18. Wang Y.; Suna A.; Mahler W.; Kasowski R. PbS in polymers. From molecules to bulk solids. J. Chem. Phys. 1987, 87, 7315–7322.

    Article  CAS  Google Scholar 

  19. Wise F. W. Lead salt quantum dots: the limit of strong quantum confinement. Acc. Chem. Res. 2000, 33, 773–780.

    Article  CAS  Google Scholar 

  20. Kang I.; Wise F. W. Electronic structure and optical properties of PbS and PbSe quantum dots. J Opt Soc Am B 1997, 14, 1632–1632.

    Article  CAS  Google Scholar 

  21. Moreels I.; Lambert K.; Smeets D.; De Muynck D.; Nollet T.; Martins J. C.; Vanhaecke F.; Vantomme A.; Delerue C.; Allan G.; Hens Z. Size-Dependent Optical Properties of Colloidal PbS Quantum Dots. ACS Nano 2009, 3, 3023–3030.

    Article  CAS  Google Scholar 

  22. Baumgardner W. J.; Whitham K.; Hanrath T. Confined-but-Connected Quantum Solids via Controlled Ligand Displacement. Nano Lett. 2013, 13, 3225–3231.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work is partially supported with funding provided by the Office of the Vice President for Research & Economic Development, Bowling Green State University. We thank Charles Codding (machine shop) and Doug Martin (electronic shop) for their technical assistance. High resolution TEM measurements were conducted using a JEOL 3011 high resolution electron microscope (NSF grant #DMR-0315633) at the Electron Microbeam Analysis Laboratory at the University of Michigan. The authors thank Joseph G. Lawrence and Lidia B. Rodriguez for their help on the TEM and FTIR measurements at the University of Toledo. We thank the Texas Advanced Computer Center (TACC) and XSEDE program (project TG-DMR130080) and Ohio Supercomputer Center (project PCS0220) for computational resources.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Z., Khan, S., Premathilake, S. et al. Colloidal PbS Nanosheets with Tunable Energy Gaps. MRS Online Proceedings Library 1726, 13–18 (2014). https://doi.org/10.1557/opl.2015.463

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2015.463

Navigation