Skip to main content
Log in

Digital Detection of Nanoparticles: Viral Diagnostics and Multiplexed Protein and Nucleic Acid Assays

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Synthetic nanoparticles have made significant impact across a broad range of technological applications including optical nanoantennas, ultra-sensitive imaging and sensing, and diagnostics and therapeutics. Natural nanoparticles such as viruses and pollutants are major concerns for human health. High-throughput characterization of nanoparticles in terms of their size and shape is crucial for practical applications of synthetic nanoparticles and highly sensitive pathogen identification. Recently, we have demonstrated Interferometric Reflectance Imaging Sensor (IRIS) with the ability to detect single nanoscale particles [1,2].

In single-particle modality of IRIS (SP-IRIS), the interference of light reflected from the sensor surface is modified by the presence of particles producing a distinct signal that reveals the size of the particle. In our approach, the dielectric layered structure acts as an optical antenna optimizing the elastic scattering characteristics of nanoparticles for sensitive detection and analysis. We have demonstrated identification of virus particles in complex samples for various viruses in multiplexed format. Size discrimination of the imaged nanoparticles (virions) allows differentiation between modified viruses having different genome lengths and facilitates a reduction in the counting of non-specifically bound particles to achieve a limit-of-detection (LOD) of 5×103 pfu/mL for the Ebola and Marburg VSV pseudotypes. We have demonstrated the simultaneous detection of multiple viruses in serum or whole blood as well as in samples contaminated with high levels of bacteria [3]. Single nanoparticle detection with IRIS has shown promising results for protein [4] and DNA arrays with attomolar detection sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. G. Daaboul, A. Yurt, X. Zhang, G. M. Hwang, B. B. Goldberg, and M. S Ünlü, “High-Throughput Detection and Sizing of Individual Low-Index Nanoparticles and Viruses for Pathogen Identification,” Nano Letters, Vol. 10, No. 11, pp. 4727–4731, (2010)

    Article  CAS  Google Scholar 

  2. A. Yurt, G. G. Daaboul, J. H. Connor, B. B. Goldberg, and M. S Ünlü, “Single nanoparticle detectors for biological applications,” Nanoscale, Vol. 4, No. 3, pp. 715–726, (2012)

    Article  CAS  Google Scholar 

  3. GG Daaboul, CA Lopez, J Chinnala, B Goldberg, JH Connor, and MS Ünlü, “Digital Sensing and Sizing of Vesicular Stomatitis Virus Pseudotypes in Complex Media: A Model for Ebola and Marburg Detection ” ACS Nano, DOI: 10.1021/nn501312q, (2014)

    Google Scholar 

  4. M. R. Monroe, G. G. Daaboul, A. Tuysuzoglu, C. A. Lopez, F. F. Little, and M. S Ünlü, “Single Nanoparticle Detection for Multiplexed Protein Diagnostics with Attomolar Sensitivity in Serum and Unprocessed Whole Blood,” Analytical Chemistry, Vol. 85, No. 7, pp. 3698–3706, (2013)

    Article  CAS  Google Scholar 

  5. M. A. van Dijk, A. L. Tchebotareva, M. Orrit, M. Lippitz, S. Berciaud, D. Lasne, L. Cognet and B. Lounis, Phys. Chem. Chem. Phys., 8, 3486–3495 (2006)

    Article  CAS  Google Scholar 

  6. H. K. Hunt and A. M. Armani, Nanoscale, 2, 1544–1559 (2010)

    Article  CAS  Google Scholar 

  7. A. Biswas, T. Wang and A. S. Biris, Nanoscale, 2, 1560–1572 (2010)

    Article  CAS  Google Scholar 

  8. See for example: G. Airy, Philos. Mag. 2, 20 (1833), and F. Perot and C. Fabry, Astrophys. J. 9, 87(1899).

  9. A. Brecht, G. Gauglitz, J Polster., “Interferometric immunoassay in a FIA-system: a sensitive and rapid approach in label-free immunosensing,” Biosens. Bioelectron. 8, 387–392. doi:10.1016/0956-5663(93)80078-4 (1993).

    Article  CAS  Google Scholar 

  10. E. Ozkumur, J. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. Gershoni, B. B. Goldberg, and M. S Ünlü, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proceedings of the National Academy of Science, Vol. 105, pp. 7988–7992 (2008)

  11. G. G. Daaboul, R. S. Vedula, S. Ahn, C. A. Lopez, A. Reddington, E. Ozkumur, and M. S. Ünlü, “LED-based Interferometric Reflectance Imaging Sensor for quantitative dynamic monitoring of biomolecular interactions,” Biosensors and Bioelectronics, Vol. 26, pp. 2221–2227 (2011)

    Article  CAS  Google Scholar 

  12. Derin Sevenler, Neşe Lortlar Ünlü, and M Selim Ünlü, “Nanoparticle Biosensing With Interferometric Reflectance Imaging,” Nanobiosensors and Nanobioanalyses, M.C. Vestergaard, K. Kerman, I.-M. Hsing, E Tamiya. (Eds.), Springer, ISBN 978-4-431-55189-8 (2015)

    Google Scholar 

  13. Y. Zhuo, Analyst, 139(5), 1007–1015 (2014)

    Article  CAS  Google Scholar 

  14. F. Vollmer and S. Arnold, Nature methods, 5(7), 591–596 (2008)

    Article  CAS  Google Scholar 

  15. A. Reddington, J. T. Trueb, D. S. Freedman, A. Tuysuzoglu, G. G. Daaboul, C. A. Lopez, W. C. Karl, J. H. Connor, H. E. Fawcett, and M. S Ünlü, “An Interferometric Reflectance Imaging Sensor for Point of Care Viral Diagnostics,” IEEE Transactions on Biomedical Engineering, Vol. 60, No. 12,, pp.3276–3283 (2013)

    Article  Google Scholar 

  16. See for example: M. S. Luchansky, A. L. Washburn, M. S. McClellan, R. Bailey, “Sensitive on-chip detection of a protein biomarker in human serum and plasma over an extended dynamic range using silicon photonic microring resonators and sub-micron beads,” Lab on a Chip. (2011) or P.E. Sheehan and L. J. Whitman “Detection limits for nanoscale biosensors,” Nano Letters, 5(4):803-7 (2005)

Download references

Acknowledgments

There are many students, postdoctoral researchers and collaborators that made significant contributions to the body of work discussed in this article. The primary funding sources are the National Science Foundation, Accelerating Innovation Research Award 1127833 and the National Institutes of Health Award R01 AI1096159.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ünlü, M.S. Digital Detection of Nanoparticles: Viral Diagnostics and Multiplexed Protein and Nucleic Acid Assays. MRS Online Proceedings Library 1720, 23–28 (2014). https://doi.org/10.1557/opl.2015.4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2015.4

Navigation