Skip to main content
Log in

Routes to Control the Chemical Potential and to Modulate the Reactivity of Nanodiamond Surfaces

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The use of detonation nanodiamond (DND) for drug delivery and cell-imaging is grounded on its chemical functionalization, and the key task to be addressed is the capability to simplify the process steps, to reduce the process times and to maximize the drug/ligand uptake. The idea underlying the present research is to modulate the loading capability of DND by controlled modification of the surface organic groups. To this aim the DND samples are treated either by wet chemistry, using medium-strong reducing agents, or by tunable H-plasmas produced in a custom-designed MW-RF reactor. The affinity of the treated DND surfaces for drugs has been probed by conjugating the ciproten (5,7- dimethoxycoumarin), a natural antioxidant molecule, and by testing in vitro the feasibility to use coumarin vehicled by nanodiamond (C@DND) as chemioterapeutic drug. The methodologies developed to modify the DND surfaces are offering practical solutions to the still open problems related to DND-based systems for drug delivery applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peristyy A. A., Fedyanina O. N., Paull B., & Nesterenko P. N. (2014). Diamond based adsorbents and their application in chromatography. Journal of Chromatography A, 1357, 68–86.

    Article  CAS  Google Scholar 

  2. Turner S., Lebedev O. I., Shenderova O., Vlasov I. I., Verbeeck J., & Van Tendeloo G. (2009). Determination of size, morphology, and nitrogen impurity location in treated detonation nanodiamond by transmission electron microscopy. Advanced functional materials, 19(13), 2116.

    Article  CAS  Google Scholar 

  3. Yeap W. S., Chen S., & Loh K. P. (2008). Detonation nanodiamond: an organic platform for the suzuki coupling of organic molecules. Langmuir, 25(1), 185.

    Article  Google Scholar 

  4. Xu K., & Xue Q. (2004). A new method for deaggregation of nanodiamond from explosive detonation: graphitization-oxidation method. Physics of the Solid State, 46(4), 649.

    Article  CAS  Google Scholar 

  5. Larionova I., Kuznetsov V., Frolov A., Shenderova O., Moseenkov S., & Mazov I. (2006). Properties of individual fractions of detonation nanodiamond. Diamond and related materials, 15(11), 1804.

    Article  CAS  Google Scholar 

  6. Batsanov S. S., Osavchuk A. N., Naumov S. P., Efimov A. E., Mendis B. G., Apperley D. C., & Batsanov A. S. (2014). Synthesis and Properties of Hydrogen‐Free Detonation Diamond. Propellants, Explosives, Pyrotechnics.

    Google Scholar 

  7. Greiner N. R., Phillips D. S., Johnson J. D., & Volk F. (1988). Diamonds in detonation soot. Nature 333, 440.

    Article  CAS  Google Scholar 

  8. Shenderova O., McGuire G., & Gogotsi Y. (2006). Nanomaterials Handbook. CRC Taylor and Francis Group, Boca Raton, 203.

    Google Scholar 

  9. Barnard A. S. (2009). Diamond standard in diagnostics: nanodiamond biolabels make their mark. Analyst, 134(9), 1751.

    Article  CAS  Google Scholar 

  10. Kaur R., & Badea I. (2013). Nanodiamonds as novel nanomaterials for biomedical applications: drug delivery and imaging systems. International journal of nanomedicine, 8, 203.

    Article  Google Scholar 

  11. Mochalin V. N., Shenderova O., Ho D., & Gogotsi Y. (2012). The properties and applications of nanodiamonds. Nature Nanotechnology, 7(1), 11.

    Article  CAS  Google Scholar 

  12. Shenderova O., Petrov I., Walsh J., Grichko V., Grishko V., Tyler T., & Cunningham G. (2006). Modification of detonation nanodiamonds by heat treatment in air. Diamond and related materials, 15(11), 1799.

    Article  CAS  Google Scholar 

  13. Xu X., Yu Z., Zhu Y., & Wang B. (2005). Influence of surface modification adopting thermal treatments on dispersion of detonation nanodiamond. Journal of Solid State Chemistry, 178(3), 688.

    Article  CAS  Google Scholar 

  14. Tamburri E., Guglielmotti V., Matassa R., Orlanducci S., Gay S., Reina G., Terranova M. L., Passeri D. & Rossi M. (2014). Detonation nanodiamonds tailor the structural order of PEDOT chains in conductive coating layers of hybrid nanoparticles. Journal of Materials Chemistry C, 2(19), 3703.

    Article  CAS  Google Scholar 

  15. Tamburri E., Orlanducci S., Guglielmotti V., Reina G., Rossi M., & Terranova M. L. (2011). Engineering detonation nanodiamond–Polyaniline composites by electrochemical routes: Structural features and functional characterizations. Polymer, 52(22), 5001.

    Article  CAS  Google Scholar 

  16. Rape A., Liu X., Kulkarni A., & Singh J. (2013). Alloy development for highly conductive thermal management materials using copper-diamond composites fabricated by field assisted sintering technology. Journal of Materials Science, 48(3), 1262.

    Article  CAS  Google Scholar 

  17. Kovalenko I., Bucknall D. G., & Yushin G. (2010). Detonation Nanodiamond and Onion-Like-Carbon-Embedded Polyaniline for Supercapacitors. Advanced Functional Materials, 20(22), 3979.

    Article  CAS  Google Scholar 

  18. Shugalei I. V., Voznyakovskii A. P., Garabadzhiu A. V., Tselinskii I. V., Sudarikov A. M., & Ilyushin M. A. (2013). Biological activity of detonation nanodiamond and prospects in its medical and biological applications. Russian Journal of General Chemistry, 83(5), 851.

    Article  CAS  Google Scholar 

  19. Welch J. O. (2014). Nanodiamonds: From biology to engineering (Doctoral dissertation, UCL (University College London)).

    Google Scholar 

  20. Krueger A., Stegk J., Liang Y., Lu L., & Jarre G. (2008). Biotinylated nanodiamond: simple and efficient functionalization of detonation diamond. Langmuir, 24(8), 4200.

    Article  CAS  Google Scholar 

  21. Yeap W. S., Tan Y. Y., & Loh K. P. (2008). Using detonation nanodiamond for the specific capture of glycoproteins. Analytical chemistry, 80(12), 4659.

    Article  CAS  Google Scholar 

  22. Reina G., Orlanducci S., Cairone C., Tamburri E., Lenti S., Cianchetta Rossi M. & Terranova M. L. (2015). Rhodamine/Nanodiamond as a System Model for Drug Carrier. Journal of Nanoscience and Nanotechnology, 15(2), 1022.

    Article  CAS  Google Scholar 

  23. Orlanducci S., Toschi F., Guglielmotti V., Tamburri E., Terranova M. L., Rossi M. (2011). Detonation nanodiamond as building blocks for fabrication of densely packed arrays of diamond nanowhiskers. Nanoscience and Nanotechnology Letters, 3, 83.

    Article  CAS  Google Scholar 

  24. Gismondi A., Reina G., Orlanducci S., Mizzoni F., Gay S., Terranova M. L., & Canini A. (2015). Nanodiamonds coupled with plant bioactive metabolites: A nanotech approach for cancer therapy. Biomaterials, 38, 22.

    Article  CAS  Google Scholar 

  25. Tabolacci C., Lentini A., Mattioli P., Provenzano B., Oliverio S., Carlomosti F., Beninati S. (2010). Antitumor properties of aloe-emodin and induction of transglutaminase 2 activity in B16–F10 melanoma cells. Life sciences, 87(9), 316.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reina, G., Orlanducci, S., Gay, S. et al. Routes to Control the Chemical Potential and to Modulate the Reactivity of Nanodiamond Surfaces. MRS Online Proceedings Library 1734, 32–39 (2014). https://doi.org/10.1557/opl.2015.305

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2015.305

Navigation