Skip to main content
Log in

High Performance ITO Nanoparticles as Nanoink for Printing as a Substitute Process of Sputtering

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Generally, indium-tin-oxides (ITO) thin film is prepared by the sputtering process with ITO target, but only 20% of ITO yielded from the target is deposited on the substrate. Namely, about 80% ITO is exhausted by the deposition elsewhere far from the substrate. The recycling process is limited so that ca 20% ITO of the starting target is lost without any recovery. Even if the recycling of ITO has been carried out in this process, we should prepare ITO target of 5 times more than apparent use of ITO on film. If we change it to printing process from the sputtering, the reduction in ITO use is expected as ca. 50%, considering the increase in film thickness by printing. Our target technology also includes ITO nanoink for the project. As a result, monodispersed ITO nanoparticles (NPs) with a cubic shape were fabricated by using quaternary ammonium hydroxide-assisted metal hydroxide organogels. These NPs have perfect uniformity in size with beautiful shape, and perfect single crystalline structure including Sn. As we were attempted to make thin film with ITO nanoink, it was successfully fabricated below 200 nm in thickness and the resistivity was drastically decreased below 1.0 × 10−3 cm after heat treatments. GZO nanoink as substitute of ITO has also been developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Sasaki, M. Nakaya, K. Kanie, A. Muramatsu, Mater. Trans., 2009, 50, 2808.

    Article  CAS  Google Scholar 

  2. Y. Endo, T. Sasaki, K. Kanie, and A. Muramatsu, Chem. Lett., 2008, 37, 1278.

    Article  CAS  Google Scholar 

  3. T. Sasaki, Y. Endo, M. Nakaya, K. Kanie, A. Nagatomi, K. Tanoue, R. Nakamura, and A. Muramatsu, J. Mater. Chem., 2010, 20, 8153.

    Article  CAS  Google Scholar 

  4. K. Kanie, T. Sasaki, M. Nakaya, and A. Muramatsu, Chem. Lett., 2013, 42, 738.

    Article  CAS  Google Scholar 

  5. H. L. Hartnagel, A. L. Dawar, A. K. Jain, C. Jagdish, Semiconducting Transparent Thin Films, IOP Publishing, Bristol, 1995.

    Google Scholar 

  6. I. Hamberg, C. G. Granqvist, J. Appl. Phys., 1986, 60, R123.

    Article  CAS  Google Scholar 

  7. B. S. Chiou, S. T. Hseih, Thin Solid Films, 1993, 229, 146.

    Article  CAS  Google Scholar 

  8. Y. C. Lin, J. Y. Li, W. T. Yen, Appl. Surf. Sci., 2008, 254, 3262.

    Article  CAS  Google Scholar 

  9. T. A. Gessert, Y. Yoshida, C. C. Fesenmaier, T. J. Coutts, J. Appl. Phys., 2009, 105, 083547.

    Article  Google Scholar 

  10. S. J. Hong, J. I. Han, Curr. Appl. Phys., 2006, 6S1, e206.

    Article  Google Scholar 

  11. S. J. Hong, Y. H. Kim, J. I. Han, IEEE Trans. Nanotechnol., 2008, 7, 172.

    Article  Google Scholar 

  12. G. Bühler, D. Thölmann, C. Feldmann, Adv. Mater., 2007, 19, 2224.

    Article  Google Scholar 

  13. T. Sugimoto, Y. Wang, H. Itoh, A. Muramatsu, Colloids Surf. A, 1998, 134, 265.

    Article  CAS  Google Scholar 

  14. K. Kanie, T. Sugimoto, Chem. Commun., 2004, 1584.

    Google Scholar 

  15. M. Niederberger, Acc. Chem. Res., 2007, 40, 793.

    Article  CAS  Google Scholar 

  16. J. E. Song, D. K. Lee, H. W. Kim, Y. I. Kim, Y. S. Kang, Colloids Surf. A, 2005, 257-258, 539.

    Article  CAS  Google Scholar 

  17. K. Y. Kim, S. B. Park, Mater. Chem. Phys., 2004, 86, 210.

    Article  CAS  Google Scholar 

  18. H. Usui, T. Sasaki, N. Koshizaki, J. Phys. Chem. B, 2006, 110, 12890.

    Article  CAS  Google Scholar 

  19. J. S. Lee, S. C. Choi, J. Eur. Ceram. Soc., 2005, 25, 3307.

    Article  CAS  Google Scholar 

  20. J. Yang, C. Li, Z. Quan, D. Kong, X. Zhang, P. Yang, J. Lin, Cryst. Growth Des., 2008, 8, 695.

    Article  CAS  Google Scholar 

  21. M. Okuya, N. Ito, K. Shiozaki, Thin Solid Films, 2007, 515, 8656.

    Article  CAS  Google Scholar 

  22. P. S. Devi, M. Chatterjee, D. Ganguli, Mater. Lett., 2002, 55, 205.

    Article  Google Scholar 

  23. Y. Aoki, J. Huang, T. Kunitake, J. Mater. Chem., 2006, 16, 292.

    Article  CAS  Google Scholar 

  24. W. S. Seo, H. H. Jo, K. Lee, J. T. Park, Adv. Mater., 2003, 15, 795.

    Article  CAS  Google Scholar 

  25. Q. Liu, W. Lu, A. Ma, J. Tang, J. Lin, J. Fang, J. Am. Chem. Soc., 2005, 127, 5276.

    Article  CAS  Google Scholar 

  26. C. H. Lee, M. Kim, T. Kim, A. Kim, J. Paek, J. W. Lee, S. Y. Choi, K. Kim, J. B. Park, K. Lee, J. Am. Chem. Soc., 2006, 128, 9326.

    Article  CAS  Google Scholar 

  27. W. Zhang, Z. Huang, T. Li, Q. Tang, D. Ma, Y. Qian, Chem. Lett., 2005, 34, 118.

    Article  CAS  Google Scholar 

  28. M. Kanehara, H. Koike, T. Yoshinaga, T. Teranishi, J. Am. Chem. Soc., 2009, 131, 17736.

    Article  CAS  Google Scholar 

  29. R. A. Gilstrap Jr., C. J. Capozzi, C. G. Carson, R. A. Gerhardt, C. J. Summers, Adv. Mater., 2008, 20, 4163.

    CAS  Google Scholar 

  30. R. A. Gilstrap Jr., C. J. Summers, Thin Solid Films, 2009, 518, 1136.

    Article  CAS  Google Scholar 

  31. T. Sugimoto, M. M. Khan, A. Muramatsu, H. Itoh, Colloids Surf. A, 1993, 79, 233.

    Article  CAS  Google Scholar 

  32. T. Sugimoto, Monodispersed Particles, Elsevier, Amsterdam, 2001. pp. 376–388.

    Google Scholar 

  33. J. Yang, C. Li, Z. Quan, C. Zhang, P. Yang, Y. Li, C. Yu, J. Lin J. Phys. Chem. C, 2008, 112, 12777.

    Article  CAS  Google Scholar 

  34. J. Yang, C. Li, Z. Quan, D. Kong, X. Zhang, P. Yang, J. Lin, Cryst. Growth Des., 2008, 8, 695.

    Article  CAS  Google Scholar 

  35. J. Ba, D. F. Rohlfing, A. Feldhoff, T. Brezesinski, I. Djerdj, M. Wark, M. Niederberger, Chem. Mater., 2006, 18, 2848.

    Article  CAS  Google Scholar 

  36. G. Frank, H. Köstlin, Appl. Phys. A, 1982, 27, 197.

    Article  Google Scholar 

  37. H. Tomonaga, T. Morimoto, Thin Solid Films, 2001, 392, 243.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by METI & NEDO Rare Metal Substitute Materials Development Project and Industrial Technology Research Grant Program in 2011 (No. 11b15004d) from NEDO.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muramatsu, A., Kanie, K., Sasaki, T. et al. High Performance ITO Nanoparticles as Nanoink for Printing as a Substitute Process of Sputtering. MRS Online Proceedings Library 1699, 49–61 (2014). https://doi.org/10.1557/opl.2014.693

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2014.693

Navigation