Skip to main content
Log in

Molten Salt Synthesis of Zirconolite Polytypes

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Zirconolite (CaZrTi2O7), a durable and compositionally flexible titanate ceramic for the immobilization of separated actinides, is currently the UK’s preferred candidate phase for the immobilization of plutonium dioxide arising from aqueous reprocessing. Here, its suitability as a waste-form for actinide chlorides arising from pyrochemical reprocessing is investigated through synthesis via a molten salt mediated reaction using a number of different salt eutectics (MgCl2:NaCl, CaCl2:NaCl and KCl:NaCl). It is found that the effectiveness of the molten salt synthesis of zirconolite is governed by the solubility of ZrO2 in the salt medium used; the synthesis proceeding via the formation of a perovskite (CaTiO3) intermediate which then reacts with ZrO2 to form zirconolite via a solution-diffusion mechanism. Most notably, in the KCl:NaCl eutectic different zirconolite polytypes are formed at different synthesis temperatures, with zirconolite-3T forming at 900 °C, giving way to zirconolite-2M at 1200 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Nishimure, T. Koyama, M. Iizuka, H. Tanaka, Prog. Nucl. Energy, 32, 381 (1998).

    Article  Google Scholar 

  2. I. N. Taylor, M. L. Thompson, T. R. Johnson, Proceedings of the International Conference and Technology Exposition on Future Nuclear, 1, 690 (1993).

    CAS  Google Scholar 

  3. W. E. Lee, R. W. Grimes, Energy Materials, 1, 22 (2006).

    Article  Google Scholar 

  4. T. O. Sandland, L.-S. Du, J.F. Stebbins, J.D. Webster, Geochim. Cosmochim. Acta, 68, 5059 (2004).

    Article  CAS  Google Scholar 

  5. D. Segal, J. Mater. Chem., 7, 1297 (1997).

    Article  CAS  Google Scholar 

  6. S. Zhang, Pak. Mater. Soc., 1, 49 (2007).

    Article  Google Scholar 

  7. T. Kimura, in: Advances in Ceramics–Synthesis and Characterization, Processing and Specific Applications, ed. C. Sikalidis (InTech, 2011).

  8. K. L. Smith, G. R. Lumpkin, Defects and Processes in the Solid State: Geoscience Applications, eds. J. N. Boland and J. D. Fitzgerald (Elsevier, 1993).

  9. H. J. Rossell, Nature, 283, 282 (1980).

    Article  CAS  Google Scholar 

  10. B. M. Gatehouse, I. E. Grey, R. J. Hill, H. J. Rosell, Acta Cryst. B, 37, 306 (1981).

    Article  Google Scholar 

  11. M. L. Hand, M. C. Stennett, N. C. Hyatt, J. Eur. Ceram. Soc., 32, 3211 (2012).

    Article  CAS  Google Scholar 

  12. M. C. Stennett, M. L. Hand, N. C. Hyatt, Mater. Res. Soc. Symp. Proc., 1518, 97 (2013).

    Article  Google Scholar 

  13. H. M. Rietveld, Acta Cryst., 22, 151 (1967).

    Article  CAS  Google Scholar 

  14. H. M. Rietveld, J. Appl. Cryst., 2, 65 (1969).

    Article  CAS  Google Scholar 

  15. M. C. Stennett, N. C. Hyatt, M. R. Gilbert, F. R. Livens, E. R. Maddrell, Mater. Res. Soc. Symp. Proc., 1107, 413 (2008).

    Article  Google Scholar 

  16. M. R. Gilbert, C. Selfslag, M. Walter, M. C. Stennett, J. Somers, N. C. Hyatt, F. R. Livens, IOP Conf. Ser.: Mater. Sci. Eng., 9, 12007 (2010).

    Article  Google Scholar 

Download references

Acknowledgments

© British Crown Owned Copyright 2013/AWE. Published with the permission of the Controller of Her Britannic Majesty’s Stationery Office.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gilbert, M.R. Molten Salt Synthesis of Zirconolite Polytypes. MRS Online Proceedings Library 1665, 325–330 (2014). https://doi.org/10.1557/opl.2014.662

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2014.662

Navigation