Skip to main content
Log in

Fabrication of Coaxial and Triaxial Atomic Force Microscope Imaging Probes

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Herein, we detail the fabrication of atomic force microscope (AFM) probes that have two and three coaxial electrodes at their tips. This fabrication strategy leverages the availability of conductive AFM probes and encompasses a general method for processing their complex and delicate structure through the deposition of insulating and conductive layers by shadow masked chemical and physical vapor deposition, respectively. Focused ion beam milling is used to expose the two electrode (coaxial) or three electrode (triaxial) structures at the tip of the AFM probe. Finally, we discuss new imaging modalities enabled by these probes including electrically-driven contact resonance imaging for nanoscale mechanical characterization, imaging the local dielectric constant by quantifying the dielectrophoretic force, and trapping functional particles at the tip of a probe using dielectrophoresis. These imaging techniques illustrate the generality and utility of this fabrication approach and suggest that such probes could be widely applied to image many nanoscale materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. J. Giessibl, Rev. Mod. Phys. 75, 949 (2003).

    Article  CAS  Google Scholar 

  2. R. A. Oliver, Rep. Prog. Phys. 71, 076501 (2008).

    Article  Google Scholar 

  3. G. Benstetter, R. Biberger and D. Liu, Thin Solid Films 517, 5100 (2009).

    Article  CAS  Google Scholar 

  4. K. A. Brown and R. M. Westervelt, Nanotechnology 20, 385302 (2009).

    Article  Google Scholar 

  5. K. A. Brown, J. A. Aguilar and R. M. Westervelt, Appl. Phys. Lett. 96, 123109 (2010).

    Article  Google Scholar 

  6. K. A. Brown, J. Berezovsky and R. M. Westervelt, Appl. Phys. Lett. 98, 183103 (2011).

    Article  Google Scholar 

  7. K. A. Brown and R. M. Westervelt, Nano Lett. 11, 3197 (2011).

    Article  CAS  Google Scholar 

  8. K. A. Brown, K. J. Satzinger and R. M. Westervelt, Nanotechnology 23, 115703 (2012).

    Article  Google Scholar 

  9. B. T. Rosner, T. Bork, V. Agrawal and D. W. v. d. Weide, Sens. Actuators A 102, 185 (2002).

    Article  CAS  Google Scholar 

  10. K.-H. Kim, N. Moldovan, C. Ke and H. D. Espinosa, Mater. Res. Soc. Symp. Proc. 782, A5.56.1 (2003).

    Google Scholar 

  11. D. Stryahilev, A. Sazonov and A. Nathan, J. Vac. Sci. Technol. A 20, 1087 (2002).

    Article  CAS  Google Scholar 

  12. K. A. Brown, B. H. Yang and R. M. Westervelt, Appl. Phys. Lett. 100, 053110 (2012).

    Article  Google Scholar 

  13. U. Rabe, K. Janser and W. Arnold, Rev. Sci. Instrum. 67, 3281 (1996).

    Article  CAS  Google Scholar 

  14. D. C. Hurley, M. Kopycinska-Müller, A. B. Kos and R. H. Geiss, Meas. Sci. Technol. 16, 2167 (2005).

    Article  CAS  Google Scholar 

  15. M. T. Cuberes, H. E. Assender, G. A. D. Briggs and O. V. Kolosov, J. Phys. D Appl. Phys. 33, 2347 (2000).

    Article  CAS  Google Scholar 

  16. U. Rabe, S. Hirsenkorn, M. Reinstädtler, T. Sulzbach, C. Lehrer and W. Arnold, Nanotechnology 18, 044008 (2007).

    Article  Google Scholar 

  17. D. C. Hurley, in Applied Scanning Probe Methods, edited by B. Bhushan and H. Fuchs (Springer-Verlag, Berlin Heidelberg, New York, NY, 2009), Vol. XI, pp. 97–138.

    Google Scholar 

  18. G. Balasubramanian, I. Y. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, T. Hanke, A. Leitenstorfer, R. Bratschitsch, F. Jelezko and J. Wrachtrup, Nature 455, 648 (2008).

    Article  CAS  Google Scholar 

  19. K. C. Neuman and A. Nagy, Nat. Methods 5, 491 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Donna Hurley and Jason Kilgore for helpful discussions and advice regarding contact resonance measurements. We acknowledge support by the Department of Defense through a National Defense Science & Engineering Graduate (NDSEG) Fellowship, the National Cancer Institute MIT-Harvard Center of Cancer Nanotechnology Excellence, and the Department of Energy under Grant DE-FG02-07ER46422.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Westervelt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Westervelt, R.M., Brown, K.A. Fabrication of Coaxial and Triaxial Atomic Force Microscope Imaging Probes. MRS Online Proceedings Library 1712, 13–21 (2014). https://doi.org/10.1557/opl.2014.613

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2014.613

Navigation