Skip to main content

Advertisement

Log in

In situ electrochemical scanning/transmission electron microscopy of electrode–electrolyte interfaces

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Insights into the dynamics of electrochemical processes are critically needed to improve our fundamental understanding of electron, charge, and mass transfer mechanisms and reaction kinetics that influence a broad range of applications, from the functionality of electrical energy-storage and conversion devices (e.g., batteries, fuel cells, and supercapacitors), to materials degradation issues (e.g., corrosion and oxidation), and materials synthesis (e.g., electrodeposition). To unravel these processes, in situ electrochemical scanning/transmission electron microscopy (ec-S/TEM) was developed to permit detailed site-specific characterization of evolving electrochemical processes that occur at electrode–electrolyte interfaces in their native electrolyte environment, in real time and at high-spatial resolution. This approach utilizes “closed-form” microfabricated electrochemical cells that couple the capability for quantitative electrochemical measurements with high spatial and temporal resolution imaging, spectroscopy, and diffraction. In this article, we review the state-of-the-art instrumentation for in situ ec-S/TEM and how this approach has resulted in new observations of electrochemical processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  1. A.M. Tripathi, W.N. Su, B.J. Hwang, Chem. Soc. Rev. 47, 736 (2018).

    Google Scholar 

  2. S.J. Pennycook, P.D. Nellist, Scanning Transmission Electron Microscopy (Springer, New York, 2011).

    Google Scholar 

  3. F.M. Ross, Science 350, 9886–1 (2015).

    Google Scholar 

  4. F.M. Ross, Liquid Cell Electron Microscopy (Cambridge University Press, Cambridge, UK, 2017).

    Google Scholar 

  5. J.M. Grogan, H.H. Bau, J. Microelectromech. Syst. 19, 885 (2010).

    Google Scholar 

  6. M.J. Williamson, R.M. Tromp, P.M. Vereecken, F.M. Ross, Nat. Mater. 2, 532 (2003).

    Google Scholar 

  7. A.J. Leenheer, J.P. Sullivan, M.J. Shaw, C.T. Harris, J. Microelectromech. Syst. 24, 1061 (2015).

    Google Scholar 

  8. R.R. Unocic, R.L. Sacci, G.M. Brown, G.M. Veith, N.J. Dudney, K.L. More, F.S. Walden, D.S. Gardiner, J. Damiano, D.P. Nackashi, Microsc. Microanal. 20, 452 (2014).

    Google Scholar 

  9. E. Fahrenkrug, D.H. Alsem, N. Salmon, S. Maldonado, J. Electrochem. Soc. 164, H358 (2017).

    Google Scholar 

  10. R. Girod, N. Nianias, V. Tileli, Microsc. Microanal. 25, 1304 (2019).

    Google Scholar 

  11. A. Radisic, P.M. Vereecken, J.B. Hannon, P.C. Searson, F.M. Ross, Nano Lett. 6, 238 (2006).

    Google Scholar 

  12. A. Radisic, P.M. Vereecken, P.C. Searson, F.M. Ross, Surf. Sci. 600, 1817 (2006).

    Google Scholar 

  13. J. Yang, C.M. Andrei, Y. Chan, B.L. Mehdi, N.D. Browning, G.A. Botton, L. Soleymani, Langmuir 35, 862 (2019).

    Google Scholar 

  14. J. Yang, C.M. Andrei, G.A. Botton, L. Soleymani, J. Phys. Chem. C 121, 7435 (2017).

    Google Scholar 

  15. X. Chen, K.W. Noh, J.G. Wen, S.J. Dillon, Acta Mater. 60, 192 (2012).

    Google Scholar 

  16. E.R. White, S.B. Singer, V. Augustyn, W.A. Hubbard, M. Mecklenburg, B. Dunn, B.C. Regan, ACS Nano 6, 6308 (2012).

    Google Scholar 

  17. M. Sun, H.G. Liao, K. Niu, H. Zheng, Sci. Rep. 3, 3227 (2013).

    Google Scholar 

  18. J.H. Park, N.M. Schneider, D.A. Steingart, H. Deligianni, S. Kodambaka, F.M. Ross, Nano Lett. 18, 1093 (2018).

    Google Scholar 

  19. J.B. Goodenough, Y. Kim, Chem. Mater. 22, 587 (2010).

    Google Scholar 

  20. A.J. Leenheer, K.L. Jungjohann, K.R. Zavadil, J.P. Sullivan, C.T. Harris, ACS Nano 9, 4379 (2015).

    Google Scholar 

  21. L. Lutz, W. Dachraoui, A. Demortière, L.R. Johnson, P.G. Bruce, A. Grimaud, J.-M. Tarascon, Nano Lett. 18, 1280 (2018).

    Google Scholar 

  22. M. Gu, L.R. Parent, B.L. Mehdi, R.R. Unocic, M.T. McDowell, Robert L. Sacci, W. Xu, J.G. Connell, P. Xu, P. Abellan, X. Chen, Y. Zhang, D.E. Perea, J.E. Evans, L.J. Lauhon, J.-G. Zhang, J. Liu, N.D. Browning, Y. Cui, I. Arslan, C.-M. Wang, Nano Lett. 13, 6106 (2013).

    Google Scholar 

  23. R.R. Unocic, X.G. Sun, R.L. Sacci, L.A. Adamczyk, D.H. Alsem, S. Dai, N.J. Dudney, K.L. More, Microsc. Microanal. 20, 1029 (2014).

    Google Scholar 

  24. Z. Zeng, X. Zhang, K. Bustillo, K. Niu, C. Gamme, J. Xu, H. Zheng, Nano Lett. 15, 5214 (2015).

    Google Scholar 

  25. Z. Zeng, W.-I. Liang, Y.-H. Chu, H. Zheng, Faraday Discuss. 176, 95 (2014).

    Google Scholar 

  26. Z. Zeng, W.-I. Liang, H.-G. Liao, H.L. Xin, Y.-H. Chu, H. Zheng, Nano Lett. 14, 1745 (2014).

    Google Scholar 

  27. R.L. Sacci, N.J. Dudney, K.L. More, L.R. Parent, I. Arslan, N.D. Browning, R.R. Unocic, Chem. Commun. 50, 2104 (2014).

    Google Scholar 

  28. R.L. Sacci, J.M. Black, N. Balke, N.J. Dudney, K.L. More, R.R. Unocic, Nano Lett. 15, 2011 (2015).

    Google Scholar 

  29. B.L. Mehdi, J. Qian, E. Nasybulin, C. Park, D.A. Welch, R. Faller, H. Mehta, W.A. Henderson, W. Xu, C.M. Wang, J.E. Evans, J. Liu, J.G. Zhang, K.T. Mueller, N.D. Browning, Nano Lett. 15, 2168 (2015).

    Google Scholar 

  30. R.L. Sacci, J.M. Black, N. Balke, N.J. Dudney, K.L. More, R.R. Unocic, Nano Lett. 15, 2011 (2015).

    Google Scholar 

  31. A.J. Leenheer, K.L. Jungjohann, K.R. Zavadil, J.P. Sullivan, C.T. Harris, ACS Nano 9, 4379 (2015).

    Google Scholar 

  32. K.L. Harrison, K.R. Zavadil, N.T. Hahn, X. Meng, J.W. Elam, A. Leenheer, J.-G. Zhang, K.L. Jungjohann, ACS Nano 11, 11194 (2017).

    Google Scholar 

  33. A. Kushima, K.P. So, C. Su, P. Bai, N. Kuriyama, T. Maebashi, Y. Fujiwara, M.Z. Bazant, J. Li, Nano Energy 32, 271 (2017).

    Google Scholar 

  34. B.L. Mehdi, A. Stevens, J. Qian, C. Park, W. Xu, W.A. Henderson, J.G. Zhang, K.T. Mueller, N.D. Browning, Sci. Rep. 6, 34267 (2016).

    Google Scholar 

  35. Y. Li, Y. Li, A. Pei, K. Yan, Y. Sun, C.-L. Wu, L.-M. Joubert, R. Chin, A.L. Koh, Y. Yu, J. Perrino, B. Butz, S. Chu, Y. Cui, Science 358, 506 (2017).

    Google Scholar 

  36. M.J. Zachman, Z. Tu, S. Choudhury, L.A. Archer, L.F. Kourkoutis, Nature 560, 345 (2018).

    Google Scholar 

  37. A. Kushima, T. Koido, Y. Fujiwara, N. Kuriyama, N. Kusumi, J. Li, Nano Lett. 15, 8260 (2015).

    Google Scholar 

  38. O.M. Karakulina, A. Demortière, W. Dachraoui, A.M. Abakumov, J. Hadermann, Nano Lett. 18, 6286 (2018).

    Google Scholar 

  39. M.E. Holtz, Y. Yu, D. Gunceler, J. Gao, R. Sundararaman, K.A. Schwarz, T.A. Arias, H.D. Abruña, D.A. Muller, Nano Lett. 14, 1453 (2014).

    Google Scholar 

  40. N. Hodnik, G. Dehm, K.J. Mayrhofer, Acc. Chem. Res. 49, 2015 (2016).

    Google Scholar 

  41. G.-Z. Zhu, S. Prabhudev, J. Yang, C.M. Gabardo, G.A. Botton, L. Soleymani, J. Phys. Chem. C 118, 22111 (2014).

    Google Scholar 

  42. V. Beermann, M.E. Holtz, E. Padgett, J.F. de Araujo, D.A. Muller, P. Strasser, Energy Environ. Sci. 12, 2476 (2019).

    Google Scholar 

  43. D.M. Bastidas, Metals 10, 458 (2020).

    Google Scholar 

  44. A. Kosari, H. Zandbergen, F. Tichelaar, P. Visser, H. Terryn, A. Mol, Corrosion 76, 4 (2020).

    Google Scholar 

  45. S. Chee, R. Hull, F. Ross, Microsc. Microanal. 18, 1110 (2012).

    Google Scholar 

  46. S.W. Chee, D.J. Duquette, F.M. Ross, R. Hull, Microsc. Microanal. 20, 462 (2014).

    Google Scholar 

  47. S.W. Chee, S.H. Pratt, K. Hattar, D. Duquette, F.M. Ross, R. Hull, Chem. Commun. 51, 168 (2015).

    Google Scholar 

  48. D. Gross, J. Kacher, J. Key, K. Hattar, I.M. Robertson, Proc. Process. Prop. Des. Adv. Ceram. Compos. 261, (2017), p. 329.

  49. J.W. Key, S. Zhu, C.M. Rouleau, R.R. Unocic, Y. Xie, J. Kacher, Ultramicroscopy 209, 112842 (2020).

    Google Scholar 

  50. S. Malladi, C. Shen, Q. Xu, T. de Kruijff, E. Yücelen, F. Tichelaar, H. Zandbergen, Chem. Commun. 49, 10859 (2013).

    Google Scholar 

  51. S. Schilling, A. Janssen, N.J. Zaluzec, M.G. Burke, Microsc. Microanal. 23, 741 (2017).

    Google Scholar 

  52. S.C. Hayden, C. Chisholm, R.O. Grudt, J.A. Aguiar, W.M. Mook, P.G. Kotula, T.S. Pilyugina, D.C. Bufford, K. Hattar, T.J. Kucharski, I.M. Taie, M.L. Ostraat, K.L. Jungjohann, NPJ Mater. Degrad. 3, 1 (2019).

    Google Scholar 

  53. K. Gao, W. Chu, B. Gu, T. Zhang, L. Qiao, Corrosion 56, 515 (2000).

    Google Scholar 

  54. S. Bhowmick, H. Espinosa, K. Jungjohann, T. Pardoen, O. Pierron, MRS Bull. 44, 487 (2019).

    Google Scholar 

  55. B.B. Lewis, M.G. Stanford, J.D. Fowlkes, K. Lester, H. Plank, P.D. Rack, Beilstein J. Nanotechnol. 6, 907 (2015).

    Google Scholar 

  56. A.J. Leenheer, K.L. Jungjohann, C.T. Harris, Microsc. Microanal. 21, 1293 (2015).

    Google Scholar 

  57. J.L. Hart, A.C. Lang, A.C. Leff, P. Longo, C. Trevor, R.D. Twesten, M.L. Taheri, Sci. Rep. 7, 1 (2017).

    Google Scholar 

  58. N.M. Schneider, M.M. Norton, B.J. Mendel, J.M. Grogan, F.M. Ross, H.H. Bau, J. Phys. Chem. C 118, 22373 (2014).

    Google Scholar 

  59. T.J. Woehl, P. Abellan, J. Microsc. 265, 135 (2017).

    Google Scholar 

  60. T.J. Woehl, K.L. Jungjohann, J.E. Evans, I. Arslan, W.D. Ristenpart, N.D. Browning, Ultramicroscopy 127, 53 (2013).

    Google Scholar 

  61. P. Abellan, B.L. Mehdi, L.R. Parent, M. Gu, C. Park, W. Xu, Y. Zhang, I. Arslan, J.-G. Zhang, C.-M. Wang, J.E. Evans, N.D. Browning, Nano Lett. 14, 1293 (2014).

    Google Scholar 

  62. E.A. Sutter, P.W. Sutter, J. Am. Chem. Soc. 136, 16865 (2014).

    Google Scholar 

  63. K. Karki, T. Mefford, D.H. Alsem, N. Salmon, W.C. Chueh, Microsc. Microanal. 24, 324 (2018).

    Google Scholar 

  64. E.A. Stricker, X. Ke, J.S. Wainright, R.R. Unocic, R.F. Savinell, J. Electrochem. Soc. 166, H126 (2019).

    Google Scholar 

  65. B.L. Mehdi, A. Stevens, L. Kovarik, N. Jiang, H. Mehta, A. Liyu, S. Reehl, B. Stanfill, L. Luzi, W. Hao, L. Bramer, N.D. Browning, Appl. Phys. Lett. 115 063102 (2019).

    Google Scholar 

  66. B.H. Kim, J. Heo, S. Kim, C.F. Reboul, H. Chun, D. Kang, H. Bae, H. Hyun, J. Lim, H. Lee, B. Han, T. Hyeon, A.P. Alivisatos, P. Ercius, H. Elmlund, J. Park, Science 368, 60 (2020).

    Google Scholar 

  67. M.J. Zachman, J.A. Hachtel, J.C. Idrobo, M. Chi, Angew. Chem. Int. Ed. Engl. 59, 1384 (2020).

    Google Scholar 

Download references

Acknowledgments

Research supported by the Center for Nanophase Materials Sciences (RRU) at Oak Ridge National Laboratory and the Center for Integrated Nanotechnologies (KLJ) at Sandia National Laboratory, which are US Department of Energy (DOE) Office of Science User Facilities. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the US DOE's National Nuclear Security Administration under Contract No. DE-NA-0003525. The views expressed in the article do not necessarily represent the views of the US DOE or the United States Government. B.L.M. and N.D.B. acknowledge support for this work from the UK Faraday Institution's Degradation, Recycling and Characterization projects. In addition, aspects of this work were supported by the Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub funded by the US DOE, Office of Science, Basic Energy Sciences and by the Chemical Imaging Initiative, a Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory (PNNL). Support was also provided by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the US DOE under the Advanced Battery Materials Research (BMR) Program (CMW). Work at PNNL was conducted at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the US DOE Office of Biological and Environmental Research. PNNL is operated by Battelle for the DOE under Contract No. DE-AC05–76RL01830.

Authors

Appendix

Appendix

Raymond Unocic is a senior staff scientist at the Center for Nanophase Materials Sciences (CNMS) at Oak Ridge National Laboratory. He is the theme science leader for the Directed Nanoscale Transformation theme at CNMS and past leader of the Microscopy Society of America's Focused Interest Group on Electron Microscopy in Liquids and Gases. His research focuses on the development and application of in situ microscopy methods to probe dynamic processes in energy-storage materials, two-dimensional materials, catalysts, and structural materials. He has received Oak Ridge National Laboratory's Alvin M. Weinberg Fellowship, the Microanalysis Society' Birks Award, and the R&D 100 Award. Unocic can be reached by email at unocicrr@ornl.gov.

Katherine Jungjohann is a staff scientist at the Center for Integrated Nanotechnologies (CINT) at Sandia National Laboratories. She is the thrust leader for the In Situ Characterization and Nanomechanics Thrust at CINT, and the co-leader of the Microscopy Society of America's Focused Interest Group on Electron Microscopy in Liquids and Gases. Her research includes developing new capabilities for in situ transmission electron microscope imaging of environmentally relevant materials processes, with a current focus on energy-storage interfaces and corrosion mechanisms. Jungjohann can be reached by email at kljungj@sandia.gov.

B. Layla Mehdi is an assistant professor and associate director of the Albert Crewe Center for Electron Microscopy at the University of Liverpool, UK. Her research focuses on the development of operando electrochemical electron microscopy capabilities, emphasizing energy storage, electrocatalysis, and pharmaceutical applications in both liquids and gases. She has received the Microscopy Society of America Early Career Albert Crewe Award, a Materials Research Society Postdoctoral Award, a Japan Society for the Promotion of Science Fellowship, a Microscopy and Microanalysis Presidential Award, and the Robert P. Apkarian Award for her development of operando measurements for beam-sensitive materials, including Li-ion batteries. Mehdi can be reached by email at b.l.mehdi@liverpool.ac.uk.

Nigel Browning is the director of the Albert Crewe Center for Electron Microscopy at the University of Liverpool, UK. He is the chair of the 2022 Gordon Research Conference on Liquid Phase Electron Microscopy. His research focuses on the development of new high spatial, temporal, and energy-resolution methods in electron microscopy. He is a Fellow of the American Association for the Advancement of Science and the Microscopy Society of America (MSA). Throughout his career, he has received the Burton Medal (MSA), the Robert L. Coble Award (The American Ceramic Society), the R&D 100 Award, the Nano 50 Award, and the Microscopy Today Innovation Award. Browning can be reached by email at nigel.browning@liverpool.ac.uk.

Chongmin Wang is a laboratory fellow at Pacific Northwest National Laboratory (PNNL). Before Joining PNNL, he worked at the Max Planck Institute for Metals Research, Germany, NIMS, Japan, and Lehigh University. His research focuses on advanced microscopy, specifically in situ microscopy and energy materials. Wang’s awards include the Materials Research Society' (MRS) Innovation in Materials Characterization Award, the Microscopy Today Innovation Award, the Roland B. Snow Award (The American Ceramic Society), the R&D 100 Award, a Journal of Materials Research (JMR) Paper of the Year Award (MRS), the Outstanding Invention Award (Japan), and the PNNL Director’s Award for Exceptional Scientific Achievement. He is a Fellow of the Materials Research Society. Wang can be reached by email at Chongmin.wang@pnnl.gov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Unocic, R.R., Jungjohann, K.L., Mehdi, B.L. et al. In situ electrochemical scanning/transmission electron microscopy of electrode–electrolyte interfaces. MRS Bulletin 45, 738–745 (2020). https://doi.org/10.1557/mrs.2020.226

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2020.226

Navigation