Skip to main content
Log in

From ion to atom to dendrite: Formation and nanomechanical behavior of electrodeposited lithium

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Development of high energy density solid-state batteries with Li metal anodes has been limited by uncontrollable growth of Li dendrites in liquid and solid electrolytes (SEs). This, in part, may be caused by a dearth of information about mechanical properties of Li, especially at the nano- and microlength scales and microstructures relevant to Li batteries. We investigate Li electrodeposited in a commercial LiCoO2/LiPON/Cu solid-state thin-film cell, grown in situ in a scanning electron microscope equipped with nanomechanical capabilities. Experiments demonstrate that Li was preferentially deposited at the LiPON/Cu interface along the valleys that mimic the domain boundaries of underlying LiCoO2 (cathode). Cryogenic electron microscopy analysis of electrodeposited Li revealed a single-crystalline microstructure, and in situ nanocompression experiments on nano-pillars with 360–759 nm diameters revealed their average Young’s modulus to be 6.76 ± 2.88 GPa with an average yield stress of 16.0 ± 6.82 MPa, ~24x higher than what has been reported for bulk polycrystalline Li. We discuss mechanical deformation mechanisms, stiffness, and strength of nano-sized electrodeposited Li in the framework of its microstructure and dislocation-governed nanoscale plasticity of crystals, and place it in the parameter space of existing knowledge on small-scale Li mechanics. The enhanced strength of Li at small scales may explain why it can penetrate and fracture through much stiffer and harder SEs than theoretically predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J.-G. Zhang, Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513 (2014).

    Article  CAS  Google Scholar 

  2. B.D. McCloskey, Attainable gravimetric and volumetric energy density of Li–S and Li ion battery cells with solid separator-protected Li metal anodes. J. Phys. Chem. Lett. 6, 4581 (2015).

    Article  CAS  Google Scholar 

  3. Z. Li, J. Huang, B.Y. Liaw, V. Metzler, J. Zhang, A review of lithium deposition in lithium-ion and lithium metal secondary batteries. J. Power Sources 254, 168 (2014).

    Article  CAS  Google Scholar 

  4. Y. Lu, Z. Tu, L.A. Archer, Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961 (2014).

    Article  CAS  Google Scholar 

  5. F. Ding, W. Xu, G.L. Graff, J. Zhang, M.L. Sushko, X. Chen, Y. Shao, M.H. Engelhard, Z. Nie, J. Xiao, X. Liu, P.V. Sushko, J. Liu, J.-G. Zhang, Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450 (2013).

    Article  CAS  Google Scholar 

  6. A. Zhamu, G. Chen, C. Liu, D. Neff, Q. Fang, Z. Yu, W. Xiong, Y. Wang, X. Wang, B.Z. Jang, Reviving rechargeable lithium metal batteries: enabling next-generation high-energy and high-power cells. Energy Env. Sci. 5, 5701 (2012).

    Article  CAS  Google Scholar 

  7. H. Yang, E.O. Fey, B.D. Trimm, N. Dimitrov, M.S. Whittingham, Effects of pulse plating on lithium electrodeposition, morphology and cycling efficiency. J. Power Sources 272, 900 (2014).

    Article  CAS  Google Scholar 

  8. C. Monroe, J. Newman, The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152, A396 (2005).

    Article  CAS  Google Scholar 

  9. G.V. Samsonov, Handbook of the Physicochemical Properties of the Elements (Springer Science & Business Media, New York, 2012).

    Google Scholar 

  10. A. Ferrese, J. Newman, Mechanical deformation of a lithium-metal anode due to a very stiff separator. J. Electrochem. Soc. 161, A1350 (2014).

    Article  CAS  Google Scholar 

  11. S. Tariq, K. Ammigan, P. Hurh, R. Schultz, P. Liu, J. Shang, Li material testing-fermilab antiproton source lithium collection lens. In Proceedings of the 2003 Particle Accelerator Conference 3, 1452 (IEEE, 2003).

  12. Z. Ahmad, V. Viswanathan, Stability of electrodeposition at solid-solid interfaces and implications for metal anodes. Phys. Rev. Lett. 119, 056003 (2017).

    Article  Google Scholar 

  13. P. Wang, W. Qu, W.-L. Song, H. Chen, R. Chen, D. Fang, Electro–chemo–mechanical issues at the interfaces in solid-state lithium metal batteries. Adv. Funct. Mater. 1900950 (2019).

    Google Scholar 

  14. F.P. McGrogan, T. Swamy, S.R. Bishop, E. Eggleton, L. Porz, X. Chen, Y.-M. Chiang, K.J. Van Vliet, Compliant yet brittle mechanical behavior of Li2S–P2S5 lithium-ion-conducting solid electrolyte. Adv. Energy Mater. 7, 1602011 (2017).

    Article  CAS  Google Scholar 

  15. M.J. Wang, R. Choudhury, J. Sakamoto, Characterizing the Li-solid-electrolyte interface dynamics as a function of stack pressure and current density. Joule (2019), doi:10.1016/j.joule.2019.06.017.

    Google Scholar 

  16. L. Porz, T. Swamy, B.W. Sheldon, D. Rettenwander, T. Frömling, H.L. Thaman, S. Berendts, R. Uecker, W.C. Carter, Y.-M. Chiang, Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv. Energy Mater. 7, 1701003 (2017).

    Article  CAS  Google Scholar 

  17. J.A. Lewis, F.J.Q. Cortes, M.G. Boebinger, J. Tippens, T.S. Marchese, N. Kondekar, X. Liu, M. Chi, M.T. McDowell, Interphase morphology between a solid-state electrolyte and lithium controls cell failure. ACS Energy Lett. 4, 591 (2019).

    Article  CAS  Google Scholar 

  18. Y. Ren, Y. Shen, Y. Lin, C.-W. Nan, Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte. Electrochem. Commun. 57, 27 (2015).

    Article  CAS  Google Scholar 

  19. E.J. Cheng, A. Sharafi, J. Sakamoto, Intergranular Li metal propagation through polycrystalline Li6. 25Al0. 25La3Zr2O12 ceramic electrolyte. Electrochim. Acta 223, 85 (2017).

    Article  CAS  Google Scholar 

  20. J. Tippens, J.C. Miers, A. Afshar, J.A. Lewis, F.J.Q. Cortes, H. Qiao, T.S. Marchese, C.V. Di Leo, C. Saldena, M.T. McDowell, Visualizing chemo-mechanical degradation of a solid-state battery electrolyte. ACS Energy Lett. 4 (6), 1475 (2019).

    Article  CAS  Google Scholar 

  21. F. Han, A.S. Westover, J. Yue, X. Fan, F. Wang, M. Chi, D.N. Leonard, N.J. Dudney, H. Wang, C. Wang, High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 4, 187 (2019).

    Article  CAS  Google Scholar 

  22. C. Xu, Z. Ahmad, A. Aryanfar, V. Viswanathan, J.R. Greer, Enhanced strength and temperature dependence of mechanical properties of Li at small scales and its implications for Li metal anodes. Proc. Natl. Acad. Sci. 114, 57 (2017).

    Article  CAS  Google Scholar 

  23. E.G. Herbert, S.A. Hackney, V. Thole, N.J. Dudney, P.S. Phani, Nanoindentation of high-purity vapor deposited lithium films: A mechanistic rationalization of diffusion-mediated flow. J. Mater. Res. 33, 1347 (2018).

    Article  CAS  Google Scholar 

  24. E.G. Herbert, S.A. Hackney, V. Thole, N.J. Dudney, P.S. Phani, Nanoindentation of high-purity vapor deposited lithium films: A mechanistic rationalization of the transition from diffusion to dislocation-mediated flow. J. Mater. Res. 33, 1361 (2018).

    Article  CAS  Google Scholar 

  25. A. Masias, N. Felten, R. Garcia-Mendez, J. Wolfenstine, J. Sakamoto, Elastic, plastic, and creep mechanical properties of lithium metal. J. Mater. Sci. 54, 2585 (2019).

    Article  CAS  Google Scholar 

  26. Y. Wang, Y.T. Cheng, A nanoindentation study of the viscoplastic behavior of pure lithium. Scr. Mater. 130, 191 (2017).

    Article  CAS  Google Scholar 

  27. S. Narayan, L. Anand, A large deformation elastic–viscoplastic model for lithium. Extreme Mech. Lett. 24, 21 (2018).

    Article  Google Scholar 

  28. W.S. LePage, Y. Chen, E. Kazyak, K.-H. Chen, A.J. Sanchez, A. Poli, E.M. Arruda, M.D. Thouless, N.P. Dasgupta, Lithium mechanics: Roles of strain rate and temperature and implications for lithium metal batteries. J. Electrochem. Soc. 166, A89 (2019).

    Article  CAS  Google Scholar 

  29. D. Hull, H.M. Rosenberg, The deformation of lithium, sodium and potassium at low temperatures: Tensile and resistivity experiments. Philos. Mag. 4, 303 (1959).

    Article  CAS  Google Scholar 

  30. R.P. Schultz, Lithium: Measurement of Young’s Modulus and Yield Strength (Fermi National Accelerator Laboratory, Batavia, IL, 2002).

    Book  Google Scholar 

  31. J. Wolfenstine, H. Jo, Y.-H. Cho, I.N. David, P. Askeland, E.D. Case, H. Kim, H. Choe, J. Sakamoto, A preliminary investigation of fracture toughness of Li7La3Zr2O12 and its comparison to other solid li-ionconductors. Mater. Lett. 96, 117 (2013).

    Article  CAS  Google Scholar 

  32. M. Motoyama, M. Ejiri, Y. Iriyama, Modeling the nucleation and growth of Li at metal current collector/LiPON interfaces. J. Electrochem. Soc. 162, A7067 (2015).

    Article  CAS  Google Scholar 

  33. L. Zhang, T. Yang, C. Du, Q. Liu, Y. Tang, J. Zhao, B. Wang, T. Chen, Y. Sun, P. Jia, H. Li, L. Geng, J. Chen, H. Ye, Z. Wang, Y. Li, H. Sun, X. Li, Q. Dai, Y. Tang, Q. Peng, T. Shen, X. Zhang, T. Zhu, J. Huang, Lithium whisker growth and stress generation in an in situ atomic force microscope–environmental transmission electron microscope set-up. Nat. Nanotechnol. 15, 94 (2020).

    Article  CAS  Google Scholar 

  34. C.D. Fincher, D. Ojeda, Y. Zhang, G.M. Pharr, Mechanical properties of metallic lithium: from nano to bulk scales. Acta Mater. 186, 215 (2020).

    Article  CAS  Google Scholar 

  35. P. Zhang, S.X. Li, Z.F. Zhang, General relationship between strength and hardness. Mater. Sci. Eng. A 529, 62 (2011).

    Article  CAS  Google Scholar 

  36. X.H. Liu, L. Zhong, L. Zhang, A. Kushima, S.X. Mao, J. Li, Z.Z. Ye, J.P. Sullivan, J.Y. Huang, Lithium fiber growth on the anode in a nanowire lithium ion battery during charging. Appl. Phys. Lett. 98, 183107 (2011).

    Article  CAS  Google Scholar 

  37. J.-Y. Kim, D. Jang, J.R. Greer, Tensile and compressive behavior of tungsten, molybdenum, tantalum and niobium at the nanoscale. Acta Mater. 58, 2355 (2010).

    Article  CAS  Google Scholar 

  38. V. Krasnov, K.-W. Nieh, S.-J. Ting, Method of manufacturing a thin film battery, US Patent (2005).

    Google Scholar 

  39. V. Krasnov, K.-W. Nieh, J. Li, Thin film battery and manufacturing method, US Patent (2011).

    Google Scholar 

  40. M.M. Beg, M. Nielsen, Temperature dependence of lattice dynamics of lithium 7. Phys. Rev. B 14, 4266 (1976).

    Article  CAS  Google Scholar 

  41. S.-W. Lee, S.M. Han, W.D. Nix, Uniaxial compression of fcc Au nanopillars on an MgO substrate: The effects of prestraining and annealing. Acta Mater. 57, 4404 (2009).

    Article  CAS  Google Scholar 

  42. J.R. Greer, J.T.M. De Hosson, Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56, 654 (2011).

    Article  CAS  Google Scholar 

  43. G. Lee, J.-Y. Kim, M.J. Burek, J.R. Greer, T.Y. Tsui, Plastic deformation of indium nanostructures. Mater. Sci. Eng. A 528, 6112 (2011).

    Article  CAS  Google Scholar 

  44. M.J. Burek, {etet al.} Fabrication, microstructure, and mechanical properties of tin nanostructures. Mater. Sci. Eng. A 528, 5822 (2011).

    Article  CAS  Google Scholar 

  45. J.B. Bates, N.J. Dudney, G.R. Gruzalski, R.A. Zuhr, A. Choudhury, C.F. Luck, J.D. Robertson, Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries. J. Power Sources 43, 103 (1993).

    Article  CAS  Google Scholar 

  46. N.J. Dudney, Solid-state thin-film rechargeable batteries. Mater. Sci. Eng. B 116, 245 (2005).

    Article  CAS  Google Scholar 

  47. J.B. Bates, N.J. Dudney, B. Neudecker, A. Ueda, C.D. Evans, Thin-film lithium and lithium-ion batteries. Solid State Ion. 135, 33 (2000).

    Article  CAS  Google Scholar 

  48. J. Li, C. Ma, M. Chi, C. Liang, N.J. Dudney, Solid electrolyte: the key for high-voltage lithium batteries. Adv. Energy Mater. 5, 1401408 (2015).

    Article  CAS  Google Scholar 

  49. B.J. Neudecker, N.J. Dudney, J.B. Bates, “Lithium-free” thin-film battery with in situ plated Li anode. J. Electrochem. Soc. 147, 517 (2000).

    Article  CAS  Google Scholar 

  50. P. Albertus, S. Babinec, S. Litzelman, A. Newman, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 3, 16 (2018).

    Article  CAS  Google Scholar 

  51. Comsol, Multiphysics, v. 5.2 a. COMSOL AB, Stockholm. (Sweden, 2018), http://www.comsol.com.

    Google Scholar 

  52. Y. Hamon, A. Douard, F. Sabary, C. Marcel, P. Vinatier, B. Pecquenard, A. Levasseur, Influence of sputtering conditions on ionic conductivity of LiPON thin films. Solid State Ion. 177, 257 (2006).

    Article  CAS  Google Scholar 

  53. J. Schwenzel, V. Thangadurai, W. Weppner, Investigation of thin film all-solid-state lithium ion battery materials. Ionics 9, 348 (2003).

    Article  CAS  Google Scholar 

  54. F. Sagane, K. Ikeda, K. Okita, H. Sano, H. Sakaebe, Y. Iriyama, Effects of current densities on the lithium plating morphology at a lithium phosphorus oxynitride glass electrolyte/copper thin film interface. J. Power Sources 233, 34 (2013).

    Article  CAS  Google Scholar 

  55. J. Qian, W.A. Henderson, W. Xu, P. Bhattacharya, M. Engelhard, O. Borodin, J.-G. Zhang, High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).

    Article  CAS  Google Scholar 

  56. Y. Li, Y. Li, A. Pei, K. Yan, Y. Sun, C.-L. Wu, L.-M. Joubert, R. Chin, A.L. Koh, Y. Yu, J. Perrino, B. Butz, S. Chu, Y. Cui, Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy. Science 358, 506 (2017).

    Article  CAS  Google Scholar 

  57. F. Wang, J. Graetz, M.S. Moreno, C. Ma, L. Wu, V. Volkov, Chemical distribution and bonding of lithium in intercalated graphite: Identification with optimized electron energy loss spectroscopy. ACS Nano 5, 1190 (2011).

    Article  CAS  Google Scholar 

  58. D.-R. Lru, D.B. Williams, The electron-energy-loss spectrum of lithium metal. Philos. Mag. B 53, L123 (1986).

    Article  Google Scholar 

  59. B.L. Mehdi, J. Qian, E. Nasybulin, C. Park, D.A. Welch, R. Faller, H. Mehta, W.A. Henderson, W. Xu, C.M. Wang, J.E. Evans, J. Liu, J.-G. Zhang, K.T. Mueller, N.D. Browning, Observation and quantification of nanoscale processes in lithium batteries by operando electrochemical (S)TEM. Nano Lett. 15, 2168 (2015).

    Article  CAS  Google Scholar 

  60. X. Wang, M. Zhang, J. Alvarado, S. Wang, M. Sina, B. Lu, J. Bouwer, W. Xu, J. Xiao, J.-G. Zhang, J. Liu, Y.S. Meng, New insights on the structure of electrochemically deposited lithium metal and its solid electrolyte interphases via cryogenic TEM. Nano Lett. 17, 7606 (2017).

    Article  CAS  Google Scholar 

  61. L. Vitos, A.V. Ruban, H.L. Skriver, J. Kollar, The surface energy of metals. Surf. Sci. 411, 186 (1998).

    Article  CAS  Google Scholar 

  62. J.R. Greer, W.C. Oliver, W.D. Nix, Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 53, 1821 (2005).

    Article  CAS  Google Scholar 

  63. A.T. Jennings, M.J. Burek, J.R. Greer, Microstructure versus size: mechanical properties of electroplated single crystalline Cu nanopillars. Phys. Rev. Lett. 104, 135503 (2010).

    Article  CAS  Google Scholar 

  64. S.M. Han, G. Feng, J.Y. Jung, H.J. Jung, J.R. Groves, W.D. Nix, Y. Cui, Critical-temperature/Peierls-stress dependent size effects in body centered cubic nanopillars. Appl. Phys. Lett. 102, 041910 (2013).

    Article  CAS  Google Scholar 

  65. A.S. Schneider, D. Kaufmann, B.G. Clark, C.P. Frick, P.A. Gruber, R. Mönig, O. Kraft, E. Arzt, Correlation between critical temperature and strength of small-scale bcc pillars. Phys. Rev. Lett. 103, 105501 (2009).

    Article  CAS  Google Scholar 

  66. L.-W. Ji, S.-J. Young, T.-H. Fang, C.-H. Liu, Buckling characterization of vertical ZnO nanowires using nanoindentation. Appl. Phys. Lett. 90, 033109 (2007).

    Article  CAS  Google Scholar 

  67. G. Richter, K. Hillerich, D.S. Gianola, R. Monig, O. Kraft, C.A. Volkert, Ultrahigh strength single crystalline nanowhiskers grown by physical vapor deposition. Nano Lett. 9, 3048 (2009).

    Article  CAS  Google Scholar 

  68. H. Bei, S. Shim, E.P. George, M.K. Miller, E.G. Herbert, G.M. Pharr, Compressive strengths of molybdenum alloy micro-pillars prepared using a new technique. Scr. Mater. 57, 397 (2007).

    Article  CAS  Google Scholar 

  69. D. Kiener, C. Motz, M. Rester, M. Jenko, G. Dehm, FIB damage of Cu and possible consequences for miniaturized mechanical tests. Mater. Sci. Eng. A  459, 262 (2007).

    Article  CAS  Google Scholar 

  70. I.N. Sneddon, The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).

    Article  Google Scholar 

  71. E.G. Herbert, S.A. Hackney, N.J. Dudney, P.S. Phani, Nanoindentation of high-purity vapor deposited lithium films: The elastic modulus. J. Mater. Res. 33, 1335 (2018).

    Article  CAS  Google Scholar 

  72. T. Slotwinski, J. Trivisonno, Temperature dependence of the elastic constants of single crystal lithium. J. Phys. Chem. Solids 30, 1276 (1969).

    Article  CAS  Google Scholar 

  73. C.R. Krenn, D. Roundy, J.W. Morris Jr., M.L. Cohen, Ideal strengths of bcc metals. Mater. Sci. Eng. A 319, 111 (2001).

    Article  Google Scholar 

  74. M.J. Burek, J.R. Greer, Fabrication and microstructure control of nanoscale mechanical testing specimens via electron beam lithography and electroplating. Nano Lett. 10, 69 (2009).

    Article  CAS  Google Scholar 

  75. M.D. Uchic, D.M. Dimiduk, J.N. Florando, W.D. Nix, Sample dimensions influence strength and crystal plasticity. Science 305, 986 (2004).

    Article  CAS  Google Scholar 

  76. P. Sudarshan, K.E. Johanns, G. Duscher, A. Gail, P.E. George, G.M. Pharr, Scanning transmission electron microscope observations of defects in as-grown and pre-strained Mo alloy fibers. Acta Mater. 59, 2172 (2011).

    Article  CAS  Google Scholar 

  77. H. Bei, S. Shim, G.M. Pharr, E.P. George, Effects of pre-strain on the compressive stress–strain response of Mo-alloy single-crystal micropillars. Acta Mater. 56, 4762 (2008).

    Article  CAS  Google Scholar 

  78. A. Gangulee, The structure of electroplated and vapor-deposited copper films. J. Appl. Phys. 43, 867 (1972).

    Article  CAS  Google Scholar 

  79. K.E. Johanns, {etet al.} In-situ tensile testing of single-crystal molybdenum-alloy fibers with various dislocation densities in a scanning electron microscope. J. Mater. Res. 27, 508 (2012).

    Article  CAS  Google Scholar 

  80. Q. Xiao, L. Huang, Y. Shi, Suppression of shear banding in amorphous ZrCuAl nanopillars by irradiation. J. Appl. Phys. 113, 083514 (2013).

    Article  CAS  Google Scholar 

  81. D.J. Magagnosc, G. Kumar, J. Schroers, P. Felfer, J.M. Cairney, D.S. Gianola, Effect of ion irradiation on tensile ductility, strength and fictive temperature in metallic glass nanowires. Acta Mater. 74, 165 (2014).

    Article  CAS  Google Scholar 

  82. D.Z. Chen, X.W. Gu, Q. An, W.A. Goddard, J.R. Greer, Ductility and work hardening in nano-sized metallic glasses. Appl. Phys. Lett. 106, 061903 (2015).

    Article  CAS  Google Scholar 

  83. J. Saint, M. Morcrette, D. Larcher, J.M. Tarascon, Exploring the Li–Ga room temperature phase diagram and the electrochemical performances of the LixGay alloys vs. Li. Solid State Ion. 176, 189 (2005).

    Article  CAS  Google Scholar 

  84. A.T. Jennings, C. Gross, F. Greer, Z.H. Aitken, S.-W. Lee, C.R. Weinberger, J.R. Greer, Higher compressive strengths and the Bauschinger effect in conformally passivated copper nanopillars. Acta Mater. 60, 3444 (2012).

    Article  CAS  Google Scholar 

  85. M. Hommel, O. Kraft, Deformation behavior of thin copper films on deformable substrates. Acta Mater. 49, 3935 (2001).

    Article  CAS  Google Scholar 

  86. T. Zhu, J. Li, A. Samanta, A. Leach, K. Gall, Temperature and strain-rate dependence of surface dislocation nucleation. Phys. Rev. Lett. 100, 025502 (2008).

    Article  CAS  Google Scholar 

  87. A.T. Jennings, J. Li, J.R. Greer, Emergence of strain-rate sensitivity in Cu nanopillars: Transition from dislocation multiplication to dislocation nucleation. Acta Mater. 59, 5627 (2011).

    Article  CAS  Google Scholar 

  88. W. Cai, V.V. Bulatov, Mobility laws in dislocation dynamics simulations. Mater. Sci. Eng. A 387, 277 (2004).

    Article  CAS  Google Scholar 

  89. N. Friedman, A.T. Jennings, G. Tsekenis, J.-Y. Kim, M. Tao, J.T. Uhl, J.R. Greer, K.A. Dahmen, Statistics of dislocation slip avalanches in nanosized single crystals show tuned critical behavior predicted by a simple mean field model. Phys. Rev. Lett. 109, 095507 (2012).

    Article  CAS  Google Scholar 

  90. X. Ni, H. Zhang, D.B. Liarte, L.W. McFaul, K.A. Dahmen, J.P. Sethna, J.R. Greer, Yield precursor dislocation avalanches in small crystals: the irreversibility transition. Phys. Rev. Lett. 123, 035501 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the generous financial support from the ARPA-E IDEAS Grant No. DE-AR0000884. Part of J.B.’s contribution was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. We also acknowledge A. Malyutin and S. Mageswaran for their help and discussions on performing TEM, and O. Tertuliano, C. Portela, and J. Zhang for their invaluable help and discussions about the mechanical experiments. The authors acknowledge X. Xia for his help with the SEM electrochemical experiments. J.B. acknowledges useful discussions with A. Fang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia R. Greer.

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrs.2020.148

Supplementary Video 1

Video of a uniaxial compression experiment of a 622-nm diameter, 2.42-μm tall electrodeposited Li pillar deformed at a prescribed loading rate of 0.5 μN/s. The video is sped up 10×.

Supplementary Video 2

Video of a uniaxial compression experiment of a 721-nm diameter, 3.41-μm tall electrodeposited Li pillar deformed at a prescribed displacement rate of 2.5 nm/s. The video is sped up 10×.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Citrin, M.A., Yang, H., Nieh, S.K. et al. From ion to atom to dendrite: Formation and nanomechanical behavior of electrodeposited lithium. MRS Bulletin 45, 891–904 (2020). https://doi.org/10.1557/mrs.2020.148

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2020.148

Navigation