Skip to main content
Log in

Materials science for quantum information science and technology

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Quantum computing, sensing, and communications are emerging technologies that may circumvent known limitations of their existing traditional counterparts. While the promises of these technologies are currently narrow in scope, it is possible that they will broadly impact our lives by revolutionizing the capabilities of data centers and medical diagnostics, for example. At the heart of these technologies is the use of a quantum object to contain information, called a quantum bit or qubit. Current realizations of qubits exist in a broad variety of material systems, including individual spins in semiconductors or insulators, superconducting circuits, and trapped ions. Further advancement of qubits requires significant contributions from materials science in areas of materials selection, synthesis, fabrication, simulation and characterization. Here, we discuss some of the needs and opportunities for contributions to advance the fundamental understanding of materials used in quantum information applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Frontiers of Materials Research (National Academies of Sciences, Engineering, and Medicine, Washington, DC, 2019), doi:10.17226/25244.

  2. C. Broholm, I. Fisher, J. Moore, M. Murname, Basic Research Needs Workshop on Quantum Materials for Energy Relevant Technology (2017), http://science.energy.gov/bes/community-resources/reports.

  3. C.S. Chattopadhyay, R. Falcone, R. Walsworth, Quantum Sensors at the Intersections of Fundamental Science, Quantum Information Science, and Computing (2016), doi:10.2172/1358078.

  4. M.G. Raymer, C. Monroe, Quantum Sci. Technol. 4, 020504 (2019).

    Google Scholar 

  5. M. Riedel, M. Kovacs, P. Zoller, J. Mlynek, T. Calarco, Quantum Sci. Technol. 4, 020501 (2019).

    Google Scholar 

  6. C.N. Lau, F. Xia, L. Cao, MRS Bull. 45 (5), 340 (2020).

    Google Scholar 

  7. R.P. Feynman, in 1st Conference on Physics and Computation (Institute of Technology, Boston, 1981).

    Google Scholar 

  8. Y.I. Manin, “Computable and Uncomputable,” Sov. Radio (1980).

  9. F. Arute, K. Arya, R. Babbush, D. Bacon, J.C. Bardin, R. Barends, R. Biswas, S. Boixo, F.G.S.L. Brandao, D.A. Buell, B. Burkett, Y. Chen, Z. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff, K. Guerin, S. Habegger, M.P. Harrigan, M.J. Hartmann, A. Ho, M. Hoffmann, T. Huang, T.S. Humble, S.V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P.V. Klimov, S. Knysh, A. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh, S. Mandrà, J.R. McClean, M. McEwen, A. Megrant, X. Mi, K. Michielsen, M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, M.Y. Niu, E. Ostby, A. Petukhov, J.C. Platt, C. Quintana, E.G. Rieffel, P. Roushan, N.C. Rubin, D. Sank, K.J. Satzinger, V. Smelyanskiy, K.J. Sung, M.D. Trevithick, A. Vainsencher, B. Villalonga, T. White, Z.J. Yao, P. Yeh, A. Zalcman, H. Neven, J.M. Martinis, Nature 574, 505 (2019).

    Google Scholar 

  10. D.P. DiVincenzo, Fortschr. Phys. 9, 771 (2000).

    Google Scholar 

  11. R. Hanson, O. Gywat, D.D. Awschalom, Phys. Rev. B Condens. Matter Mater. Phys. 74, 161203 (2006).

    Google Scholar 

  12. S. Slussarenko, G.J. Pryde, Appl. Phys. Rev. 6, 041303 (2019).

    Google Scholar 

  13. C. Monroe, J. Kim, Science 339, 1164 (2013).

    Google Scholar 

  14. M.H. Devoret, J.M. Martinis, Exp. Aspects Quantum Comput. 3, 163 (2005).

    Google Scholar 

  15. W.D. Oliver, P.B. Welander, MRS Bull. 38, 816 (2013).

    Google Scholar 

  16. M. Kjaergaard, M.E. Schwartz, J. Braumüller, P. Krantz, J.I.-J. Wang, S. Gustavsson, W.D. Oliver, Annu. Rev. Condens. Matter Phys. 11, 369 (2020).

    Google Scholar 

  17. P. Krantz, M. Kjaergaard, F. Yan, T.P. Orlando, S. Gustavsson, W.D. Oliver, Appl. Phys. Rev. 6, 021318 (2019).

    Google Scholar 

  18. R. Hanson, L.P. Kouwenhoven, J.R. Petta, S. Tarucha, L.M.K. Vandersypen, Rev. Mod. Phys. 79, 1217 (2007).

    Google Scholar 

  19. F.A. Zwanenburg, A.S. Dzurak, A. Morello, M.Y. Simmons, L.C.L. Hollenberg, G. Klimeck, S. Rogge, S.N. Coppersmith, M.A. Eriksson, Rev. Mod. Phys. 85, 961 (2013).

    Google Scholar 

  20. M.A. Eriksson, S.N. Coppersmith, M.G. Lagally, MRS Bull. 38, 794 (2013).

    Google Scholar 

  21. D.D. Awschalom, L.C. Bassett, A.S. Dzurak, E.L. Hu, J.R. Petta, Science 339, 1174 (2013).

    Google Scholar 

  22. D.A. Hite, Y. Colombe, A.C. Wilson, D.T.C. Allcock, D. Leibfried, D.J. Wineland, D.P. Pappas, MRS Bull. 38, 826 (2013).

    Google Scholar 

  23. C.D. Bruzewicz, J. Chiaverini, R. McConnell, J.M. Sage, Appl. Phys. Rev. 6, 021314 (2019).

    Google Scholar 

  24. W.M. Witzel, M.S. Carroll, A. Morello, Ł. Cywiński, S. Das Sarma, Phys. Rev. Lett. 105, 187602 (2010).

    Google Scholar 

  25. N. Bar-Gill, L.M. Pham, C. Belthangady, D. Le Sage, P. Cappellaro, J.R. Maze, M.D. Lukin, A. Yacoby, R. Walsworth, Nat. Commun. 3, 856 (2012).

    Google Scholar 

  26. K. Eng, T.D. Ladd, A. Smith, M.G. Borselli, A.A. Kiselev, B.H. Fong, K.S. Holabird, T.M. Hazard, B. Huang, P.W. Deelman, I. Milosavljevic, A.E. Schmitz, R.S. Ross, M.F. Gyure, A.T. Hunter, Sci. Adv. 1, e1500214 (2015).

    Google Scholar 

  27. S. Freer, S. Simmons, A. Laucht, J.T. Muhonen, J.P. Dehollain, R. Kalra, F.A. Mohiyaddin, F.E. Hudson, K.M. Itoh, J.C. McCallum, D.N. Jamieson, A.S. Dzurak, A. Morello, Quantum Sci. Technol. 2, 15009 (2017).

    Google Scholar 

  28. J.T. Muhonen, J.P. Dehollain, A. Laucht, F.E. Hudson, R. Kalra, T. Sekiguchi, K.M. Itoh, D.N. Jamieson, J.C. McCallum, A.S. Dzurak, A. Morello, Nat. Nanotechnol. 9, 986 (2014).

    Google Scholar 

  29. A.M. Tyryshkin, S. Tojo, J.J.L. Morton, H. Riemann, N.V. Abrosimov, P. Becker, H.J. Pohl, T. Schenkel, M.L.W. Thewalt, K.M. Itoh, S.A. Lyon, Nat. Mater. 11, 143 (2012).

    Google Scholar 

  30. M.G. Borselli, R.S. Ross, A.A. Kiselev, E.T. Croke, K.S. Holabird, P.W. Deelman, L.D. Warren, I. Alvarado-Rodriguez, I. Milosavljevic, F.C. Ku, W.S. Wong, A.E. Schmitz, M. Sokolich, M.F. Gyure, A.T. Hunter, Appl. Phys. Lett. 98, 123118 (2011).

    Google Scholar 

  31. J.K. Gamble, P. Harvey-Collard, N.T. Jacobson, A.D. Baczewski, E. Nielsen, L. Maurer, I. Montaño, M. Rudolph, M.S. Carroll, C.H. Yang, A. Rossi, A.S. Dzurak, R.P. Muller, Appl. Phys. Lett. 109, 253101 (2016).

    Google Scholar 

  32. L. Zhang, J.W. Luo, A. Saraiva, B. Koiller, A. Zunger, Nat. Commun. 4, 2396 (2013).

    Google Scholar 

  33. M. Friesen, M.A. Eriksson, S.N. Coppersmith, Appl. Phys. Lett. 89, 202106 (2006).

    Google Scholar 

  34. T.B. Boykin, G. Klimeck, M.A. Eriksson, M. Friesen, S.N. Coppersmith, P. Von Allmen, F. Oyafuso, S. Lee, Appl. Phys. Lett. 84, 115 (2004).

    Google Scholar 

  35. N.W. Hendrickx, D.P. Franke, A. Sammak, M. Kouwenhoven, D. Sabbagh, L. Yeoh, R. Li, M.L.V. Tagliaferri, M. Virgilio, G. Capellini, G. Scappucci, M. Veldhorst, Nat. Commun. 9, 2835 (2018).

    Google Scholar 

  36. T. Konaka, M. Sato, H. Asano, S. Kubo, J. Supercond. 4, 283 (1991).

    Google Scholar 

  37. I. Giaever, Phys. Rev. Lett. 46, 245 (1974).

    Google Scholar 

  38. A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P.J.J.O. Malley, D. Sank, A. Vainsencher, J. Wenner, Appl. Phys. Lett. 100, 113510 (2012).

    Google Scholar 

  39. J.M. Sage, V. Bolkhovsky, W.D. Oliver, B. Turek, P.B. Welander, J. Appl. Phys. 109, 063915 (2011).

    Google Scholar 

  40. J.B. Chang, M.R. Vissers, A.D. Córcoles, M. Sandberg, J. Gao, W. David, J.M. Chow, J.M. Gambetta, M.B. Rothwell, G.A. Keefe, M. Steffen, P. Pappas, M. Sandberg, J.B. Chang, M.R. Vissers, D.C. Antonio, J. Gao, D.W. Abraham, J.M. Chow, J.M. Gambetta, M.B. Rothwell, G.A. Keefe, M. Steffen, D.P. Pappas, Appl. Phys. Lett. 103, 012602 (2013).

    Google Scholar 

  41. S. Seidelin, J. Chiaverini, R. Reichle, J.J. Bollinger, D. Leibfried, J. Britton, J.H. Wesenberg, R.B. Blakestad, R.J. Epstein, D.B. Hume, W.M. Itano, J.D. Jost, C. Langer, R. Ozeri, N. Shiga, D.J. Wineland, Phys. Rev. Lett. 96, 253003 (2006).

    Google Scholar 

  42. J. Chiaverini, J.M. Sage, Phys. Rev. A At. Mol. Opt. Phys. 89, 012318 (2014).

    Google Scholar 

  43. J.A. Sedlacek, J. Stuart, D.H. Slichter, C.D. Bruzewicz, R. McConnell, J.M. Sage, J. Chiaverini, Phys. Rev. A 98, 063430 (2018).

    Google Scholar 

  44. D.A. Hite, Y. Colombe, A.C. Wilson, K.R. Brown, U. Warring, R. Jördens, J.D. Jost, K.S. McKay, D.P. Pappas, D. Leibfried, D.J. Wineland, Phys. Rev. Lett. 109, 103001 (2012).

    Google Scholar 

  45. N. Daniilidis, S. Gerber, G. Bolloten, M. Ramm, A. Ransford, E. Ulin-Avila, I. Talukdar, H. Häffner, Phys. Rev. B Condens. Matter Mater. Phys. 89, 245435 (2014).

    Google Scholar 

  46. K.S. McKay, D.A. Hite, Y. Colombe, R. Jördens, A.C. Wilson, D.H. Slichter, D.T.C. Allcock, D. Leibfried, D.J. Wineland, D.P. Pappas, arXiv:1406.1778 (2014).

  47. R. McConnell, C. Bruzewicz, J. Chiaverini, J. Sage, Phys. Rev. A At. Mol. Opt. Phys. 92, 020302 (2015).

    Google Scholar 

  48. R. Barends, J. Wenner, M. Lenander, Y. Chen, R.C. Bialczak, J. Kelly, E. Lucero, P. O’Malley, M. Mariantoni, D. Sank, H. Wang, T.C. White, Y. Yin, J. Zhao, A.N. Cleland, J.M. Martinis, J.J.A. Baselmans, Appl. Phys. Lett. 99, 113507 (2011).

    Google Scholar 

  49. D. Culcer, N.M. Zimmerman, Appl. Phys. Lett. 102, 232108 (2013).

    Google Scholar 

  50. R. De Sousa, Phys. Rev. B Condens. Matter Mater. Phys. 76, 245306 (2007).

    Google Scholar 

  51. D. Culcer, X. Hu, S. Das Sarma, Appl. Phys. Lett. 95, 073102 (2009).

    Google Scholar 

  52. P.M. Radmore, P.L. Knight, J. Phys. B At. Mol. Phys. 15, 561 (1982).

    Google Scholar 

  53. F.T. Hioe, Phys. Rev. A 28, 879 (1983).

    Google Scholar 

  54. A. Blais, J. Gambetta, A. Wallraff, D.I. Schuster, S.M. Girvin, M.H. Devoret, R.J. Schoelkopf, Phys. Rev. A At. Mol. Opt. Phys. 75, 032329 (2007).

    Google Scholar 

  55. J. Koch, T.M. Yu, J. Gambetta, A.A. Houck, D.I. Schuster, J. Majer, A. Blais, M.H. Devoret, S.M. Girvin, R.J. Schoelkopf, Phys. Rev. A At. Mol. Opt. Phys. 76, 042319 (2007).

    Google Scholar 

  56. O. Dial, D.T. McClure, S. Poletto, G.A. Keefe, M.B. Rothwell, J.M. Gambetta, D.W. Abraham, J.M. Chow, M. Steffen, Supercond. Sci. Technol. 29, 044001 (2016).

    Google Scholar 

  57. M. Sandberg, M.R. Vissers, J.S. Kline, M. Weides, J. Gao, D.S. Wisbey, D.P. Pappas, Appl. Phys. Lett. 100, 262605 (2012).

    Google Scholar 

  58. J. Gao, M. Daal, A. Vayonakis, S. Kumar, J. Zmuidzinas, B. Sadoulet, B. A. Mazin, P.K. Day, H.G. Leduc, Appl. Phys. Lett. 92, 152505 (2008).

  59. C.J.K. Richardson, N.P. Siwak, J. Hackley, Z.K. Keane, J.E. Robinson, B. Arey, I. Arslan, B.S. Palmer, Supercond. Sci. Technol. 29, 64003 (2016).

    Google Scholar 

  60. S.E. De Graaf, L. Faoro, J. Burnett, A.A. Adamyan, A.Y. Tzalenchuk, S.E. Kubatkin, T. Lindström, A.V. Danilov, Nat. Commun. 9, 1143 (2018).

    Google Scholar 

  61. S. Shankar, A.M. Tyryshkin, J. He, S.A. Lyon, Phys. Rev. B Condens. Matter Mater. Phys. 82, 195323 (2010).

    Google Scholar 

  62. N. Adelstein, D. Lee, J.L. DuBois, K.G. Ray, J.B. Varley, V. Lordi, AIP Adv. 7, 025110 (2017).

    Google Scholar 

  63. L. Gordon, H. Abu-Farsakh, A. Janotti, C.G. Van de Walle, Sci. Rep. 4, 7590 (2014).

    Google Scholar 

  64. A.M. Holder, K.D. Osborn, C.J. Lobb, C.B. Musgrave, Phys. Rev. Lett. 111, 065901 (2013).

    Google Scholar 

  65. R. Mcdermott, IEEE Trans. Appl. Supercond. 19, 2 (2009).

    Google Scholar 

  66. J.D. Brehm, A. Bilmes, G. Weiss, A.V. Ustinov, J. Lisenfeld, Appl. Phys. Lett. 111, 112601 (2017).

    Google Scholar 

  67. C.R.H. McRae, R.E. Lake, J.L. Long, M. Bal, X. Wu, B. Jugdersuren, T.H. Metcalf, X. Liu, D.P. Pappas, arXiv a:1909.07428 (2019).

  68. C. Müller, J.H. Cole, J. Lisenfeld, Rep. Prog. Phys. 82, 124501 (2019).

    Google Scholar 

  69. A.P. Paz, I.V. Lebedeva, I.V. Tokatly, A. Rubio, Phys. Rev. B Condens. Matter Mater. Phys. 90, 224202 (2014).

    Google Scholar 

  70. C. Wang, Y.Y. Gao, I.M. Pop, U. Vool, C. Axline, T. Brecht, R.W. Heeres, L. Frunzio, M.H. Devoret, G. Catelani, L.I. Glazman, R.J. Schoelkopf, Nat. Commun. 5, 5839 (2014).

    Google Scholar 

  71. G. Catelani, J. Koch, L. Frunzio, R.J. Schoelkopf, M.H. Devoret, L.I. Glazman, Phys. Rev. Lett. 106, 077002 (2011).

    Google Scholar 

  72. M.V. Gustafsson, A. Pourkabirian, G. Johansson, J. Clarke, P. Delsing, Phys. Rev. B Condens. Matter Mater. Phys. 88, 245410 (2013).

    Google Scholar 

  73. G. Ramon, X. Hu, Phys. Rev. B Condens. Matter Mater. Phys. 81, 045304 (2010).

    Google Scholar 

  74. J. Bylander, S. Gustavsson, F. Yan, F. Yoshihara, K. Harrabi, G. Fitch, D.G. Cory, Y. Nakamura, J.S. Tsai, W.D. Oliver, Nat. Phys. 7, 565 (2011).

    Google Scholar 

  75. F. Yan, S. Gustavsson, J. Bylander, X. Jin, F. Yoshihara, D.G. Cory, Y. Nakamura, T.P. Orlando, W.D. Oliver, Nat. Commun. 4, 2337 (2013).

    Google Scholar 

  76. B. Sarabi, A.N. Ramanayaka, A.L. Burin, F.C. Wellstood, K.D. Osborn, Phys. Rev. Lett. 116, 167002 (2016).

    Google Scholar 

  77. J. Lisenfeld, G.J. Grabovskij, C. Müller, J.H. Cole, G. Weiss, A.V. Ustinov, Nat. Commun. 6, 6182 (2015).

    Google Scholar 

  78. S. Schlör, J. Lisenfeld, C. Müller, A. Bilmes, A. Schneider, D.P. Pappas, A.V. Ustinov, M. Weides, Phys. Rev. Lett. 123, 190502 (2019).

    Google Scholar 

  79. D. Lee, J.L. DuBois, V. Lordi, Phys. Rev. Lett. 112, 017001 (2014).

    Google Scholar 

  80. I.W. Rangelow, J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 13, 2394 (1995).

    Google Scholar 

  81. C.M. Quintana, A. Megrant, Z. Chen, A. Dunsworth, B. Chiaro, R. Barends, B. Campbell, Y. Chen, I.-C. Hoi, E. Jeffrey, J. Kelly, J.Y. Mutus, P.J.J. O’Malley, C. Neill, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T.C. White, A.N. Cleland, J.M. Martinis, Appl. Phys. Lett. 105, 062601 (2014).

    Google Scholar 

  82. X.Y. Liu, I. Arslan, B.W. Arey, J. Hackley, V. Lordi, C.J.K. Richardson, ACS Nano 12, 6843 (2018).

    Google Scholar 

  83. J. Shabani, M. Kjaergaard, H.J. Suominen, Y. Kim, F. Nichele, K. Pakrouski, T. Stankevic, R.M. Lutchyn, P. Krogstrup, R. Feidenhans’l, S. Kraemer, C. Nayak, M. Troyer, C.M. Marcus, C.J. Palmstrom, Phys. Rev. B Condens. Matter Mater. Phys. 93, 155402 (2016).

    Google Scholar 

  84. S. Gazibegovic, D. Car, H. Zhang, S.C. Balk, J.A. Logan, M.W.A. De Moor, M.C. Cassidy, R. Schmits, D. Xu, G. Wang, P. Krogstrup, R.L.M. Op Het Veld, K. Zuo, Y. Vos, J. Shen, D. Bouman, B. Shojaei, D. Pennachio, J.S. Lee, P.J. Van Veldhoven, S. Koelling, M.A. Verheijen, L.P. Kouwenhoven, C.J. Palmstrøm, E.P.A.M. Bakkers, Nature 548, 434 (2017).

    Google Scholar 

  85. L.J. Zeng, S. Nik, T. Greibe, P. Krantz, C.M. Wilson, P. Delsing, E. Olsson, J. Phys. D Appl. Phys. 48, 395308 (2015).

    Google Scholar 

  86. M.J. Cyster, J.S. Smith, J.A. Vaitkus, N. Vogt, S.P. Russo, J.H. Cole, Phys. Rev. Res. 2, 013110 (2019).

    Google Scholar 

  87. R. De Sousa, K.B. Whaley, T. Hecht, J. Von Delft, F.K. Wilhelm, Phys. Rev. B Condens. Matter Mater. Phys. 80, 094515 (2009).

    Google Scholar 

  88. S. Oh, K. Cicak, J.S. Kline, M.A. Sillanpaa, K.D. Osborn, J.D. Whittaker, R.W. Simmonds, D.P. Pappas, Phys. Rev. B Condens. Matter Mater. Phys. 74, 100502 (2006).

    Google Scholar 

  89. M. Jamali, I. Gerhardt, M. Rezai, K. Frenner, H. Fedder, J. Wrachtrup, Rev. Sci. Instrum. 85, 123703 (2014).

    Google Scholar 

  90. P. Appel, E. Neu, M. Ganzhorn, A. Barfuss, M. Batzer, M. Gratz, A. Tschöpe, P. Maletinsky, Rev Sci. Instrum. 87, 063703 (2016).

    Google Scholar 

  91. M.J. Burek, Y. Chu, M.S.Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M.D. Lukin, M. Loncar, Nat. Commun. 5, 5718 (2014).

    Google Scholar 

  92. J.W. Lyding, T.C. Shen, J.S. Hubacek, J.R. Tucker, G.C. Abeln, Appl. Phys. Lett. 64, 2010 (1994).

    Google Scholar 

  93. S.A. Cybart, E.Y. Cho, T.J. Wong, B.H. Wehlin, M.K. Ma, C. Huynh, R.C. Dynes, Nat. Nanotechnol. 10, 598 (2015).

    Google Scholar 

  94. Y.P Shim, C. Tahan, Nat. Commun. 5, 4225 (2014).

    Google Scholar 

  95. M. Fuechsle, J.A. Miwa, S. Mahapatra, H. Ryu, S. Lee, O. Warschkow, L.C.L. Hollenberg, G. Klimeck, M. Simmons, Nat. Nanotechnol. 7, 242 (2012).

    Google Scholar 

  96. A.L. Saraiva, J. Salfi, J. Bocquel, B. Voisin, S. Rogge, R.B. Capaz, M.J. Calderón, B. Koiller, Phys. Rev. B. 93, 045303 (2016).

    Google Scholar 

  97. A. Safavi-Naini, P Rabl, P.F. Weck, H.R. Sadeghpour, Phys. Rev. A At. Mol. Opt. Phys. 84, 023412 (2011).

    Google Scholar 

  98. Q.A. Turchette, D. Kielpinski, B.E. King, D. Leibfried, D.M. Meekhof, C.J. Myatt, M.A. Rowe, C.A. Sackett, C.S. Wood, W.M. Itano, C. Monroe, D.J. Wineland, Phys. Rev. A At. Mol. Opt. Phys. 61, 8 (2000).

    Google Scholar 

  99. C.J.K. Richardson, N.P. Siwak, J. Hackley, Z.K. Keane, J.E. Robinson, B. Arey, I. Arslan, B.S. Palmer, Supercond. Sci. Technol . 29, 064003 (2016).

    Google Scholar 

  100. C.T. Earnest, J.H. Béjanin, T.G. McConkey, E.A. Peters, A. Korinek, H. Yuan, M. Mariantoni, Supercond. Sci. Technol . 31, 125013 (2018).

    Google Scholar 

  101. TW. Larsen, K.D. Petersson, F. Kuemmeth, T.S. Jespersen, P. Krogstrup, J. Nygard, C.M. Marcus, Phys. Rev. Lett. 115, 1 (2015).

    Google Scholar 

  102. J.M. Martinis, K.B. Cooper, R. McDermott, M. Steffen, M. Ansmann, K.D. Osborn, K. Cicak, S. Oh, D.P. Pappas, R.W. Simmonds, C.C. Yu, Phys. Rev. Lett. 95, 210503 (2005).

    Google Scholar 

  103. H. Paik, K.D. Osborn, Appl. Phys. Lett. 96, 072505 (2010).

    Google Scholar 

  104. J.R. Williams, A.J. Bestwick, P. Gallagher, S.S. Hong, Y. Cui, A.S. Bleich, J.G. Analytis, I.R. Fisher, D. Goldhaber-Gordon, Phys. Rev. Lett. 109, 056803 (2012).

    Google Scholar 

  105. S.M. Frolov, S.R. Plissard, S. Nadj-Perge, L.P Kouwenhoven, E.P.A.M. Bakkers, MRS Bull 38, 809 (2013).

    Google Scholar 

  106. A. Stern, N.H. Lindner, Science 339, 1179 (2013).

    Google Scholar 

  107. P. Krogstrup, N.L.B. Ziino, W. Chang, S.M. Albrecht, M.H. Madsen, E. Johnson, J. Nygård, C.M. Marcus, T.S. Jespersen, Nat. Mater. 14, 400 (2015).

    Google Scholar 

  108. N.C. Jones, R. Van Meter, A.G. Fowler, P.L. McMahon, J. Kim, T.D. Ladd, Y. Yamamoto, Phys. Rev. X 2, 031007 (2012).

    Google Scholar 

  109. R. Van Meter, C. Horsman, Commun. ACM 56, 84 (2013).

    Google Scholar 

  110. M. Ahsan, R. Van Meter, J. Kim, ACM J. Emerg. Technol. Comput. Syst. 12, 39 (2015).

    Google Scholar 

  111. D.P. DiVincenzo, P.W. Shor, Phys. Rev Lett. 77, 3260 (1996).

    Google Scholar 

  112. E. Knill, R. Lafamme, Phys. Rev. A At. Mol. Opt. Phys. 55, 900 (1997).

    Google Scholar 

  113. A.Y. Kitaev, Russ. Math. Surv. 52, 1191 (1997).

    Google Scholar 

  114. A.M. Steane, Nature 399, 124 (1999).

    Google Scholar 

  115. A.M. Steane, Phys. Rev. A At. Mol. Opt. Phys. 54, 4741 (1996).

    Google Scholar 

  116. S. Das Sarma, M. Freedman, C. Nayak, Phys. Today 59, 32 (2006).

    Google Scholar 

  117. X.L. Qi, T.L. Hughes, S.C Zhang, Phys. Rev B Condens. Matter Mater. Phys. 82, 184516 (2010).

    Google Scholar 

  118. S. Sasaki, M. Kriener, K. Segawa, K. Yada, Y. Tanaka, M. Sato, Y. Ando, Phys. Rev Lett. 107, 217001 (2011).

    Google Scholar 

  119. P. Zhang, K. Yaji, T. Hashimoto, Y. Ota, T. Kondo, K. Okazaki, Z. Wang, J. Wen, G.D. Gu, H. Ding, S. Shin, Science 360, 182 (2018).

    Google Scholar 

  120. R.M. Lutchyn, E.P.A.M. Bakkers, L.P. Kouwenhoven, P. Krogstrup, C.M. Marcus, Y. Oreg, Nat. Rev Mater. 3, 52 (2018).

    Google Scholar 

  121. A.G. Fowler, M. Mariantoni, J.M. Martinis, A.N. Cleland, Phys. Rev A At. Mol. Opt. Phys. 86, 032324 (2012).

    Google Scholar 

  122. C.D. Bruzewicz, J. Chiaverini, R. McConnell, J.M. Sage, Appl. Phys. Rev. 6, 021314 (2019).

    Google Scholar 

  123. D. Rosenberg, D. Kim, R. Das, D. Yost, S. Gustavsson, D. Hover, P. Krantz, A. Melville, L. Racz, G.O. Samach, S.J. Weber, F. Yan, J.L. Yoder, A.J. Kerman, W.D. Oliver, NPJ Quantum Inf. 3, 42 (2017).

    Google Scholar 

  124. N. Amemiya, O. Tsukamoto, IEEE Trans. Appl. Supercond. 5, 218 (1995).

    Google Scholar 

  125. S. Barannikova, G. Shlyakhova, L. Zuev, A. Malinovskiy, Int. J. GEOMATE 10, 1906 (2016).

    Google Scholar 

  126. S.G. Kang, M.G. Kim, C.G. Kim, Compos. Struct. 78, 440 (2007)

    Google Scholar 

  127. J. Preskill, Quantum 2, 79 (2018).

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank N. Siwak for his generous assistance with the figures. Part of this work by V.L. was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the US Department of Energy’s National Nuclear Security Administration under Contract No. DE-NA0003525.

This article describes objective technical results and analysis. Any subjective views or opinions that might be expressed do not necessarily represent the views of the US Department of Energy or the United States Government.

Author information

Authors and Affiliations

Authors

Additional information

This article is based on the Materials Research Society/Kavli Future of Materials Workshop: Solid-State Materials for Quantum Computing, held in April 2019 in Phoenix, Ariz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richardson, C.J.K., Lordi, V., Misra, S. et al. Materials science for quantum information science and technology. MRS Bulletin 45, 485–497 (2020). https://doi.org/10.1557/mrs.2020.147

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2020.147

Navigation