Skip to main content
Log in

Thermal transport for probing quantum materials

  • Emergent Quantum Materials
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

In probing quantum materials, thermal transport is less appreciated than electrical transport. This article aims to show the pivotal role that thermal transport may play in understanding quantum materials—longitudinal thermal transport reflects itinerant quasiparticles, even in an electrical insulating phase, while transverse thermal transport such as the thermal Hall and Nernst effects is tightly linked to nontrivial topology. We discuss three examples—quantum spin liquids wherein thermal transport identifies its existence, superconductors wherein thermal transport reveals the superconducting gap structure, and topological Weyl semimetals where the anomalous Nernst effect is a consequence of nontrivial Berry curvature. We conclude with an outlook on the unique insights thermal transport may offer to probe a much broader category of quantum phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. “The Rise of Quantum Materials” [Editorial] Nat. Phys. 12, 105 (2016).

  2. P.W. Anderson, The Theory of Superconductivity in the High-Tc Cuprates, Princeton Series in Physics (Princeton University Press, Princeton, NJ, 1997), vii, p. 446.

    Google Scholar 

  3. J.R. Schrieffer, Theory of Superconductivity, Advanced Book Classics (Advanced Book Program, Perseus Books, Reading, MA, 1999), xviii, p. 332.

    Google Scholar 

  4. J. Orenstein, A.J. Millis, Science 288, 468 (2000).

    Google Scholar 

  5. A. Damascelli, Z. Hussain, Rev. Mod. Phys. 75, 473 (2003).

    Google Scholar 

  6. P.A. Lee, N. Nagaosa, X.-G. Wen, Rev. Mod. Phys. 78, 17 (2006).

    Google Scholar 

  7. K.v. Klitzing, G. Dorda, M. Pepper, Phys. Rev. Lett. 45, 494 (1980).

    Google Scholar 

  8. D.R. Yennie, Rev. Mod. Phys. 59, 781 (1987).

    Google Scholar 

  9. B.A. Bernevig, T.L. Hughes, S.C. Zhang, Science 314, 1757 (2006).

    Google Scholar 

  10. B.A. Bernevig, S.C. Zhang, Phys. Rev. Lett. 96, 106802 (2006).

    Google Scholar 

  11. M. Konig, S. Wiedmann, C. Brune, A. Roth, H. Buhmann, L.W. Molenkamp, X.L. Qi, S.C. Zhang, Science 318, 766 (2007).

    Google Scholar 

  12. R. Yu, W. Zhang, H.J. Zhang, S.C. Zhang, X. Dai, Z. Fang, Science 329, 61 (2010).

    Google Scholar 

  13. C.Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L.L. Wang, Z.Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S.C. Zhang, K. He, Y. Wang, L. Lu, X.C. Ma, Q.K. Xue, Science 340, 167 (2013).

    Google Scholar 

  14. Z.F. Ezawa, Quantum Hall Effects: Recent Theoretical and Experimental Developments, 3rd ed. (World Scientific, Hackensack, NJ, 2013).

    Google Scholar 

  15. C.Z. Chang, M. Li, J. Phys. Condens. Matter 28, 123002 (2016).

    Google Scholar 

  16. M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

    Google Scholar 

  17. X.-L. Qi, S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).

    Google Scholar 

  18. J. Wang, S.C. Zhang, Nat. Mater. 16, 1062 (2017).

    Google Scholar 

  19. A.A. Burkov, Nat. Mater. 15, 1145 (2016).

    Google Scholar 

  20. B. Yan, C. Felser, Annu. Rev. Condens. Matter Phys. 8, 337 (2017).

    Google Scholar 

  21. N.P. Armitage, E.J. Mele, A. Vishwanath, Rev. Mod. Phys. 90, 015001 (2018).

    Google Scholar 

  22. K. Manna, Y. Sun, L. Muechler, J. Kübler, C. Felser, Nat. Rev. Mater. 3, 244 (2018).

    Google Scholar 

  23. M. Neupane, S.Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T.R. Chang, H.T. Jeng, H. Lin, A. Bansil, F. Chou, M.Z. Hasan, Nat. Commun. 5, 3786 (2014).

    Google Scholar 

  24. S.M. Huang, S.Y. Xu, I. Belopolski, C.C. Lee, G. Chang, B. Wang, N. Alidoust, G. Bian, M. Neupane, C. Zhang, S. Jia, A. Bansil, H. Lin, M.Z. Hasan, Nat. Commun. 6, 7373 (2015).

    Google Scholar 

  25. S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang, H. Zheng, J. Ma, D.S. Sanchez, B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, M.Z. Hasan, Science 349, 613 (2015).

    Google Scholar 

  26. S.-Y. Xu, C. Liu, S.K. Kushwaha, R. Sankar, J.W. Krizan, I. Belopolski, M. Neupane, G. Bian, N. Alidoust, T.-R. Chang, H.-T. Jeng, C.-Y. Huang, W.-F. Tsai, H. Lin, P. P. Shibayev, F.-C. Chou, R.J. Cava, M.Z. Hasan, Science 347, 294 (2015).

    Google Scholar 

  27. T. Ideue, T. Kurumaji, S. Ishiwata, Y. Tokura, Nat. Mater. 16, 797 (2017).

    Google Scholar 

  28. D. Khomskii, Physics 2, 20 (2009).

    Google Scholar 

  29. H.T. Diep, Frustrated Spin Systems, 2nd ed. (World Scientific, Hackensack, NJ, 2013), pp. xxv.

    Google Scholar 

  30. L. Balents, Nature 464, 199 (2010).

    Google Scholar 

  31. S.H. Lee, C. Broholm, W. Ratcliff, G. Gasparovic, Q. Huang, T.H. Kim, S.W. Cheong, Nature 418, 856 (2002).

    Google Scholar 

  32. S.T. Bramwell, M.J.P. Gingras, Science 294, 1495 (2001).

    Google Scholar 

  33. N. Read, S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991).

    Google Scholar 

  34. F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Nat. Photonics 4, 611 (2010).

    Google Scholar 

  35. C.W.J. Beenakker, Rev. Mod. Phys. 80, 1337 (2008).

    Google Scholar 

  36. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007).

    Google Scholar 

  37. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005).

    Google Scholar 

  38. C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 226801 (2005).

    Google Scholar 

  39. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Nat. Nanotechnol. 7, 699 (2012).

    Google Scholar 

  40. K.F. Mak, J. Shan, Nat. Photonics 10, 216 (2016).

    Google Scholar 

  41. C. Kittel, Introduction to Solid State Physics, 8th ed. (Wiley, Hoboken, NJ, 2005).

    Google Scholar 

  42. S. Lee, K. Hippalgaonkar, F. Yang, J. Hong, C. Ko, J. Suh, K. Liu, K. Wang, J.J. Urban, X. Zhang, C. Dames, S.A. Hartnoll, O. Delaire, J. Wu, Science 355, 371 (2017).

    Google Scholar 

  43. H.J. Goldsmid, Introduction to Thermoelectricity, Springer Series in Materials Science (Springer, Heidelberg, Germany, 2010), pp. xvi.

    Google Scholar 

  44. Y. Kasahara, T. Ohnishi, Y. Mizukami, O. Tanaka, S. Ma, K. Sugii, N. Kurita, H. Tanaka, J. Nasu, Y. Motome, T. Shibauchi, Y. Matsuda, Nature 559, 227 (2018).

    Google Scholar 

  45. J. Nasu, M. Udagawa, Y. Motome, Phys. Rev. B 92, 115122 (2015).

    Google Scholar 

  46. Z. Wang, X.-L. Qi, S.-C. Zhang, Phys. Rev. B 84, 014527 (2011).

    Google Scholar 

  47. M. Banerjee, M. Heiblum, A. Rosenblatt, Y. Oreg, D.E. Feldman, A. Stern, V. Umansky, Nature 545, 75 (2017).

    Google Scholar 

  48. M. Banerjee, M. Heiblum, V. Umansky, D.E. Feldman, Y. Oreg, A. Stern, Nature 559, 205 (2018).

    Google Scholar 

  49. K. Behnia, H. Aubin, Rep. Prog. Phys. 79, 046502 (2016).

    Google Scholar 

  50. M. Ikhlas, T. Tomita, T. Koretsune, M.-T. Suzuki, D. Nishio-Hamane, R. Arita, Y. Otani, S. Nakatsuji, Nat. Phys. 13, 1085 (2017).

    Google Scholar 

  51. F. Caglieris, C. Wuttke, S. Sykora, V. Süss, C. Shekhar, C. Felser, B. Büchner, C. Hess, Phys. Rev. B 98, 201107(R) (2018).

    Google Scholar 

  52. S.J. Watzman, T.M. McCormick, C. Shekhar, S.-C. Wu, Y. Sun, A. Prakash, C. Felser, N. Trivedi, J.P. Heremans, Phys. Rev. B 97, 161404(R) (2018).

    Google Scholar 

  53. L. Savary, L. Balents, Rep. Prog. Phys. 80, 016502 (2016).

    Google Scholar 

  54. Y. Zhou, K. Kanoda, T.-K. Ng, Rev. Mod. Phys. 89, 025003 (2017).

    Google Scholar 

  55. Y. Shimizu, K. Miyagawa, K. Kanoda, M. Maesato, G. Saito, Phys. Rev. Lett. 91, 107001 (2003).

    Google Scholar 

  56. M. Yamashita, N. Nakata, Y. Senshu, M. Nagata, H.M. Yamamoto, R. Kato, T. Shibauchi, Y. Matsuda, Science 328, 1246 (2010).

    Google Scholar 

  57. Y. Shen, Y.D. Li, H. Wo, Y. Li, S. Shen, B. Pan, Q. Wang, H.C. Walker, P. Steffens, M. Boehm, Y. Hao, D.L. Quintero-Castro, L.W. Harriger, M.D. Frontzek, L. Hao, S. Meng, Q. Zhang, G. Chen, J. Zhao, Nature 540, 559 (2016).

    Google Scholar 

  58. Y. Xu, J. Zhang, Y.S. Li, Y.J. Yu, X.C. Hong, Q.M. Zhang, S.Y. Li, Phys. Rev. Lett. 117, 267202 (2016).

    Google Scholar 

  59. T.H. Han, J.S. Helton, S. Chu, D.G. Nocera, J.A. Rodriguez-Rivera, C. Broholm, Y.S. Lee, Nature 492, 406 (2012).

    Google Scholar 

  60. J.S. Helton, K. Matan, M.P. Shores, E.A. Nytko, B.M. Bartlett, Y. Yoshida, Y. Takano, A. Suslov, Y. Qiu, J.H. Chung, D.G. Nocera, Y.S. Lee, Phys. Rev. Lett. 98, 107204 (2007).

    Google Scholar 

  61. J.S. Gardner, M.J.P. Gingras, J.E. Greedan, Rev. Mod. Phys. 82, 53 (2010).

    Google Scholar 

  62. Y. Okamoto, M. Nohara, H. Aruga-Katori, H. Takagi, Phys. Rev. Lett. 99, 137207 (2007).

    Google Scholar 

  63. A. Kitaev, Ann. Phys. 321, 2 (2006).

    Google Scholar 

  64. Y. Singh, P. Gegenwart, Phys. Rev. B 82, 064412 (2010).

    Google Scholar 

  65. A. Banerjee, P. Lampen-Kelley, J. Knolle, C. Balz, A.A. Aczel, B. Winn, Y. Liu, D. Pajerowski, J. Yan, C.A. Bridges, A.T. Savici, B.C. Chakoumakos, M.D. Lumsden, D.A. Tennant, R. Moessner, D.G. Mandrus, S.E. Nagler, NPJ Quantum Mater. 3, 8 (2018).

    Google Scholar 

  66. A. Banerjee, J.Q. Yan, J. Knolle, C.A. Bridges, M.B. Stone, M.D. Lumsden, D.G. Mandrus, D.A. Tennant, R. Moessner, S.E. Nagler, Science 356, 1055 (2017).

    Google Scholar 

  67. S.-H. Do, S.-Y. Park, J. Yoshitake, J. Nasu, Y. Motome, S. Kwon Yong, D.T. Adroja, D.J. Voneshen, K. Kim, T.H. Jang, J.H. Park, K.-Y. Choi, S. Ji, Nat. Phys. 13, 1079 (2017).

    Google Scholar 

  68. A. Biffin, R.D. Johnson, I. Kimchi, R. Morris, A. Bombardi, J.G. Analytis, A. Vishwanath, R. Coldea, Phys. Rev. Lett. 113, 197201 (2014).

    Google Scholar 

  69. Z. Ma, K. Ran, J. Wang, S. Bao, Z. Cai, S. Li, J. Wen, Chin. Phys. B 27, 106101 (2018).

    Google Scholar 

  70. J. Wen, S.-L. Yu, S. Li, W. Yu, J.-X. Li, NPJ Quantum Mater. 4, 12 (2019).

    Google Scholar 

  71. S.M. Winter, A.A. Tsirlin, M. Daghofer, J. van den Brink, Y. Singh, P. Gegenwart, R. Valenti, J. Phys. Condens. Matter 29, 493002 (2017).

    Google Scholar 

  72. R. Hentrich, A.U.B. Wolter, X. Zotos, W. Brenig, D. Nowak, A. Isaeva, T. Doert, A. Banerjee, P. Lampen-Kelley, D.G. Mandrus, S.E. Nagler, J. Sears, Y.J. Kim, B. Buchner, C. Hess, Phys. Rev. Lett. 120, 117204 (2018).

    Google Scholar 

  73. Y.J. Yu, Y. Xu, K.J. Ran, J.M. Ni, Y.Y. Huang, J.H. Wang, J.S. Wen, S.Y. Li, Phys. Rev. Lett. 120, 067202 (2018).

    Google Scholar 

  74. J. Cookmeyer, J.E. Moore, Phys. Rev. B 98, 060412(R) (2018).

    Google Scholar 

  75. H. Doki, M. Akazawa, H.Y. Lee, J.H. Han, K. Sugii, M. Shimozawa, N. Kawashima, M. Oda, H. Yoshida, M. Yamashita, Phys. Rev. Lett. 121, 097203 (2018).

    Google Scholar 

  76. Y. Kasahara, K. Sugii, T. Ohnishi, M. Shimozawa, M. Yamashita, N. Kurita, H. Tanaka, J. Nasu, Y. Motome, T. Shibauchi, Y. Matsuda, Phys. Rev. Lett. 120, 217205 (2018).

    Google Scholar 

  77. M. Ye, G.B. Halasz, L. Savary, L. Balents, Phys. Rev. Lett. 121, 147201 (2018).

    Google Scholar 

  78. T. Isono, S. Sugiura, T. Terashima, K. Miyagawa, K. Kanoda, S. Uji, Nat. Commun. 9, 1509 (2018).

    Google Scholar 

  79. J.M. Ni, Q.Y. Liu, Y.J. Yu, E.J. Cheng, Y.Y. Huang, Z.Y. Liu, X.J. Wang, Y. Sui, S.Y. Li, Phys. Rev. B 97, 104413 (2018).

    Google Scholar 

  80. L. Clark, G. Sala, D.D. Maharaj, M.B. Stone, K.S. Knight, M.T.F. Telling, X. Wang, X. Xu, J. Kim, Y. Li, S.-W. Cheong, B.D. Gaulin, Nat. Phys. 15, 262 (2019).

    Google Scholar 

  81. R. Samajdar, S. Chatterjee, S. Sachdev, M.S. Scheurer, Phys. Rev. B 99, 165126 (2019).

    Google Scholar 

  82. Y.H. Gao, C. Hickey, T. Xiang, S. Trebst, G. Chen, Phys. Rev. Res. 1, 013014 (2019).

    Google Scholar 

  83. A. Pidatella, A. Metavitsiadis, W. Brenig, Phys. Rev. B 99, 075141 (2019).

    Google Scholar 

  84. A. Metavitsiadis, C. Psaroudaki, W. Brenig, Phys. Rev. B 99, 205129 (2019).

    Google Scholar 

  85. Z. Ma, J. Wang, Z.Y. Dong, J. Zhang, S. Li, S.H. Zheng, Y. Yu, W. Wang, L. Che, K. Ran, S. Bao, Z. Cai, P. Cermak, A. Schneidewind, S. Yano, J.S. Gardner, X. Lu, S.L. Yu, J.M. Liu, S. Li, J.X. Li, J. Wen, Phys. Rev. Lett. 120, 087201 (2018).

    Google Scholar 

  86. J.M. Ni, B.L. Pan, B.Q. Song, Y.Y. Huang, J.Y. Zeng, Y.J. Yu, E.J. Cheng, L.S. Wang, D.Z. Dai, R. Kato, S.Y. Li, Phys. Rev. Lett. 123, 247204 (2019).

    Google Scholar 

  87. P. Bourgeois-Hope, F. Laliberté, E. Lefrançois, G. Grissonnanche, S.R. de Cotret, R. Gordon, S. Kitou, H. Sawa, H. Cui, R. Kato, L. Taillefer, N. Doiron-Leyraud, Phys. Rev. X 9, 041051 (2019).

    Google Scholar 

  88. M. Yamashita, N. Nakata, Y. Kasahara, T. Sasaki, N. Yoneyama, N. Kobayashi, S. Fujimoto, T. Shibauchi, Y. Matsuda, Nat. Phys. 5, 44 (2008).

    Google Scholar 

  89. M. Hirschberger, R. Chisnell, Y.S. Lee, N.P. Ong, Phys. Rev. Lett. 115, 106603 (2015).

    Google Scholar 

  90. H. Katsura, N. Nagaosa, P.A. Lee, Phys. Rev. Lett. 104, 066403 (2010).

    Google Scholar 

  91. Y. Matsuda, K. Izawa, I. Vekhter, J. Phys. Condens. Matter 18, R705 (2006).

    Google Scholar 

  92. C. Uher, Y.Q. Liu, J.F. Whitaker, J. Supercond. 7, 323 (1994).

    Google Scholar 

  93. C. Proust, E. Boaknin, R.W. Hill, L. Taillefer, A.P. Mackenzie, Phys. Rev. Lett. 89, 147003 (2002).

    Google Scholar 

  94. S.J. Hagen, Z.Z. Wang, N.P. Ong, Phys. Rev. B Condens. Matter 40, 9389 (1989).

    Google Scholar 

  95. M. Matsukawa, T. Mizukoshi, K. Noto, Y. Shiohara, Phys. Rev. B 53, R6034 (1996).

    Google Scholar 

  96. G.K. White, S.J. Collocott, R. Driver, R.B. Roberts, A.M. Stewart, J. Phys C Solid State Phys. 21, L631 (1988).

    Google Scholar 

  97. D. Varshney, K.K. Choudhary, R.K. Singh, New J. Phys. 5, 72 (2003).

    Google Scholar 

  98. M.B. Salamon, F. Yu, V.N. Kopylov, J. Supercond. 8, 449 (1995).

    Google Scholar 

  99. M.I. Flik, C.L. Tien, J. Heat Transfer 112, 872 (1990).

    Google Scholar 

  100. L. Tewordt, T. Wölkhausen, Solid State Commun. 75, 515 (1990).

    Google Scholar 

  101. M.J. Graf, S.K. Yip, J.A. Sauls, D. Rainer, Phys. Rev. B 53, 15147 (1996).

    Google Scholar 

  102. P.J. Hirschfeld, W.O. Putikka, Phys. Rev. Lett. 77, 3909 (1996).

    Google Scholar 

  103. A.S. Alexandrov, N.F. Mott, Phys. Rev. Lett. 71, 1075 (1993).

    Google Scholar 

  104. S. Wermbter, L. Tewordt, Phys. Rev. B 44, 9524 (1991).

    Google Scholar 

  105. K.E. Goodson, M.I. Flik, J. Heat Transfer 115, 17 (1993).

    Google Scholar 

  106. T. Muranaka, J. Akimitsu, M. Sera, Phys. Rev. B 64, 020505(R) (2001).

    Google Scholar 

  107. A.V. Sologubenko, J. Jun, S.M. Kazakov, J. Karpinski, H.R. Ott, Phys. Rev. B 66, 014504 (2002).

    Google Scholar 

  108. M. Putti, V. Braccini, E. Galleani d’Agliano, F. Napoli, I. Pallecchi, A.S. Siri, P. Manfrinetti, A. Palenzona, Phys. Rev. B 67, 064505 (2003).

    Google Scholar 

  109. R. Movshovich, M. Jaime, J.D. Thompson, C. Petrovic, Z. Fisk, P.G. Pagliuso, J.L. Sarrao, Phys. Rev. Lett. 86, 5152 (2001).

    Google Scholar 

  110. K. Izawa, Y. Nakajima, J. Goryo, Y. Matsuda, S. Osaki, H. Sugawara, H. Sato, P. Thalmeier, K. Maki, Phys. Rev. Lett. 90, 064505 (2003).

    Google Scholar 

  111. G. Seyfarth, J.P. Brison, M.A. Measson, D. Braithwaite, G. Lapertot, J. Flouquet, Phys. Rev. Lett. 97, 236403 (2006).

    Google Scholar 

  112. J.P. Reid, M.A. Tanatar, A. Juneau-Fecteau, R.T. Gordon, S.R. de Cotret, N. Doiron-Leyraud, T. Saito, H. Fukazawa, Y. Kohori, K. Kihou, C.H. Lee, A. Iyo, H. Eisaki, R. Prozorov, L. Taillefer, Phys. Rev. Lett. 109, 087001 (2012).

    Google Scholar 

  113. J.P. Reid, M.A. Tanatar, X.G. Luo, H. Shakeripour, N. Doiron-Leyraud, N. Ni, S.L. Bud’ko, P.C. Canfield, R. Prozorov, L. Taillefer, Phys. Rev. B 82, 064501 (2010).

    Google Scholar 

  114. M.A. Tanatar, J.P. Reid, S. René de Cotret, N. Doiron-Leyraud, F. Laliberté, E. Hassinger, J. Chang, H. Kim, K. Cho, Y.J. Song, Y.S. Kwon, R. Prozorov, L. Taillefer, Phys. Rev. B 84, 054507 (2011).

    Google Scholar 

  115. Z. Zhang, A.F. Wang, X.C. Hong, J. Zhang, B.Y. Pan, J. Pan, Y. Xu, X.G. Luo, X.H. Chen, S.Y. Li, Phys. Rev. B 91, 024502 (2015).

    Google Scholar 

  116. Y. Machida, K. Tomokuni, T. Isono, K. Izawa, Y. Nakajima, T. Tamegai, J. Phys. Soc. Jpn. 78, 073705 (2009).

    Google Scholar 

  117. G. Chen, Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons, MIT-Pappalardo Series in Mechanical Engineering (Oxford University Press, Oxford, UK, 2005), pp. xxiii, 531 p.

  118. M. Ausloos, M. Houssa, Supercond. Sci. Technol. 12, R103 (1999).

    Google Scholar 

  119. H. Shakeripour, C. Petrovic, L. Taillefer, New J. Phys. 11, 055065 (2009).

    Google Scholar 

  120. I. Santoso, k-space Microscopy of Bi2Sr2CaCu2O8+δ: Fermiology and Many-Body Effects, PhD thesis, Van der Waals-Zeeman Institute, Amsterdam, The Netherlands (2008).

  121. P.A. Lee, Phys. Rev. Lett. 71, 1887 (1993).

    Google Scholar 

  122. I.M. Lifshitz, JETP Lett. 11, 1130 (1960).

    Google Scholar 

  123. Z. Zhu, H. Yang, B. Fauqué, Y. Kopelevich, K. Behnia, Nat. Phys. 6, 26 (2009).

    Google Scholar 

  124. D. Xiao, Y. Yao, Z. Fang, Q. Niu, Phys. Rev. Lett. 97, 026603 (2006).

    Google Scholar 

  125. R. Lundgren, P. Laurell, G.A. Fiete, Phys. Rev. B 90, 165115 (2014).

    Google Scholar 

  126. G. Sharma, P. Goswami, S. Tewari, Phys. Rev. B 93, 035116 (2016).

    Google Scholar 

  127. M.N. Chernodub, A. Cortijo, M.A.H. Vozmediano, Phys. Rev. Lett. 120, 206601 (2018).

    Google Scholar 

  128. J. Noky, J. Gayles, C. Felser, Y. Sun, Phys. Rev. B 97, 220405(R) (2018).

    Google Scholar 

  129. S. Saha, S. Tewari, Eur. Phys. J. B 91, 4 (2018).

    Google Scholar 

  130. K. Das, A. Agarwal, Phys. Rev. B 100, 085406 (2019).

    Google Scholar 

  131. V. Kozii, B. Skinner, L. Fu, “Thermoelectric Hall Conductivity and Figure of Merit in Dirac/Weyl Materials,” arXiv:1902.10123 (2019).

  132. R.C. McKay, T.M. McCormick, N. Trivedi, Phys. Rev. B 99, 245119 (2019).

    Google Scholar 

  133. T. Liang, J. Lin, Q. Gibson, T. Gao, M. Hirschberger, M. Liu, R.J. Cava, N.P. Ong, Phys. Rev. Lett. 118, 136601 (2017).

    Google Scholar 

  134. G. Sharma, C. Moore, S. Saha, S. Tewari, Phys. Rev. B 96, 195119 (2017).

    Google Scholar 

  135. C. Fu, S.N. Guin, S.J. Watzman, G. Li, E. Liu, N. Kumar, V. Süβ, W. Schnelle, G. Auffermann, C. Shekhar, Y. Sun, J. Gooth, C. Felser, Energy Environ. Sci. 11, 2813 (2018).

    Google Scholar 

  136. K.G. Rana, F.K. Dejene, N. Kumar, C.R. Rajamathi, K. Sklarek, C. Felser, S.S.P. Parkin, Nano Lett. 18, 6591 (2018).

    Google Scholar 

  137. H. Reichlova, R. Schlitz, S. Beckert, P. Swekis, A. Markou, Y.-C. Chen, D. Kriegner, S. Fabretti, G. Hyeon Park, A. Niemann, S. Sudheendra, A. Thomas, K. Nielsch, C. Felser, S.T.B. Goennenwein, Appl. Phys. Lett. 113, 212405 (2018).

    Google Scholar 

  138. S.N. Guin, P. Vir, Y. Zhang, N. Kumar, S.J. Watzman, C. Fu, E. Liu, K. Manna, W. Schnelle, J. Gooth, C. Shekhar, Y. Sun, C. Felser, Adv Mater. 31, e1806622 (2019).

    Google Scholar 

  139. C. Wuttke, F. Caglieris, S. Sykora, F. Scaravaggi, A.U.B. Wolter, K. Manna, V. Süss, C. Shekhar, C. Felser, B. Büchner, C. Hess, Phys. Rev. B 100, 085111 (2019).

    Google Scholar 

  140. K. Schwab, E.A. Henriksen, J.M. Worlock, M.L. Roukes, Nature 404, 974 (2000).

    Google Scholar 

  141. D.E. Angelescu, M.C. Cross, M.L. Roukes, Superlattices Microstruct. 23, 673 (1998).

    Google Scholar 

  142. L.G.C. Rego, G. Kirczenow, Phys. Rev. Lett. 81, 232 (1998).

    Google Scholar 

  143. M.A. Tanatar, J. Paglione, C. Petrovic, L. Taillefer, Science 316, 1320 (2007).

    Google Scholar 

  144. H. Pfau, S. Hartmann, U. Stockert, P. Sun, S. Lausberg, M. Brando, S. Friedemann, C. Krellner, C. Geibel, S. Wirth, S. Kirchner, E. Abrahams, Q. Si, F. Steglich, Nature 484, 493 (2012).

    Google Scholar 

  145. J. Crossno, J.K. Shi, K. Wang, X.M. Liu, A. Harzheim, A. Lucas, S. Sachdev, P. Kim, T. Taniguchi, K. Watanabe, T.A. Ohki, K.C. Fong, Science 351, 1058 (2016).

    Google Scholar 

Download references

Acknowledgements

M.L. acknowledges support from US DOE BES Award No. DE-SC0020148, which enabled him to complete the work. G.C. acknowledges the support from US DOE BES Award No. DE-FG02–02ER45977 and the support from ARO MURI (Grant No. W911NF-19–1-0279) via the University of Michigan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingda Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Chen, G. Thermal transport for probing quantum materials. MRS Bulletin 45, 348–356 (2020). https://doi.org/10.1557/mrs.2020.124

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2020.124

Navigation