Skip to main content
Log in

Imperfect architected materials: Mechanics and topology optimization

  • Three-Dimensional Architected Materials and Structures
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

This article examines two intertwined topics on architected materials with imperfections—their mechanics and optimum design. We first discuss the main factors that control defect sensitivity along with a range of strategies for defect characterization. The potency of both as-designed and as-manufactured defects on their macroscopic response is highlighted with an emphasis on those caused by additive manufacturing technology. As a natural extension of defect sensitivity, we describe the design approaches for architected materials with particular focus on systematic tools of topology optimization. Recent extensions to formally incorporate imperfections in the optimization formulation are discussed, where the ultimate goal is to generate architectures that are flaw-tolerant and perform robustly in the presence of imperfections. We conclude with an outlook on the field, highlighting potential areas of future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. L.J. Gibson, M.F. Ashby, Cellular Solids: Structure and Properties, 2nd ed. (Cambridge University Press, Cambridge, UK, 1997).

  2. V.S. Deshpande, M.F. Ashby, N.A. Fleck, Acta Mater. 49, 1035 (2001).

    Google Scholar 

  3. V.S. Deshpande, N.A. Fleck, M.F. Ashby, J. Mech. Phys. Solids 49, 1747 (2001).

    Google Scholar 

  4. O. Sigmund, Int. J. Solids Struct. 31, 2313 (1994).

    Google Scholar 

  5. C. Coulais, A. Sabbadini, F. Vink, M. van Hecke, Nature 561, 512 (2018).

    Google Scholar 

  6. L. Liu, P. Kamm, F. García-Moreno, J. Banhart, D. Pasini, J. Mech. Phys. Solids 107, 160 (2017).

    Google Scholar 

  7. J. Bauer, A. Schroer, R. Schwaiger, O. Kraft, Nat. Mater. 15, 438 (2016).

    Google Scholar 

  8. L.R. Meza, S. Das, J.R. Greer, Science 345, 1322 (2014).

    Google Scholar 

  9. J.K. Guest, T. Igusa, Comput. Methods Appl. Mech. Eng. 198, 116 (2008).

    Google Scholar 

  10. O. Sigmund, Acta Mech. Sin. 25, 227 (2009).

    Google Scholar 

  11. E. Andreassen, B.S. Lazarov, O. Sigmund, Mech. Mater. 69, 1 (2014).

    Google Scholar 

  12. L. Zhao, S. Ha, K.W. Sharp, A.B. Geltmacher, R.W. Fonda, A.H. Kinsey, Y. Zhang, S.M. Ryan, D. Erdeniz, D.C. Dunand, K.J. Hemker, J.K. Guest, T.P. Weihs, Acta Mater. 81, 326 (2014).

    Google Scholar 

  13. S. Lin, L. Zhao, J.K. Guest, T. P Weihs, Z. Liu, J. Mech. Des. 137, 081402 (2015).

    Google Scholar 

  14. S. Arabnejad, R. Burnett Johnston, J.A. Pura, B. Singh, M. Tanzer, D. Pasini, Acta Biomater. 30, 345 (2016).

  15. D. Melancon, Z. Bagheri, R. Johnston, L. Liu, M. Tanzer, D. Pasini, Acta Biomater. 63, 350 (2017).

    Google Scholar 

  16. A. Maggi, H. Li, J.R. Greer, Acta Biomater. 63, 294 (2017).

  17. A. Moussa, M. Tanzer, D. Pasini, J. Mech. Behav. Biomed. Mater. 85, 134 (2018).

    Google Scholar 

  18. Z.S. Bagheri, D. Melancon, L. Liu, R.B. Johnston, D. Pasini, J. Mech. Behav. Biomed. Mater. 70, 17 (2017).

    Google Scholar 

  19. J. Mueller, K. Shea, Mater. Today Commun. 17, 69 (2018).

    Google Scholar 

  20. D.D. Symons, N.A. Fleck, J. Appl. Mech. 75, 051011 (2008).

    Google Scholar 

  21. C. Chen, T.J. Lu, N.A. Fleck, Int. J. Mech. Sci. 43, 487 (2001).

    Google Scholar 

  22. A.E. Simone, L.J. Gibson, Acta Mater. 46, 2139 (1998).

    Google Scholar 

  23. Y.X. Gan, C. Chen, Y.P. Shen, Int. J. Solids Struct. 42, 6628 (2005).

    Google Scholar 

  24. W. Ronan, V.S. Deshpande, N.A. Fleck, Int. J. Solids Struct. 102, 200 (2016).

    Google Scholar 

  25. A. Gross, P. Pantidis, K. Bertoldi, S. Gerasimidis, J. Mech. Phys. Solids 124, 577 (2019).

    Google Scholar 

  26. C. Chen, T.J. Lu, N.A. Fleck, J. Mech. Phys. Solids 47, 2235 (1999).

    Google Scholar 

  27. H.C. Tankasala, V.S. Deshpande, N.A. Fleck, J. Mech. Phys. Solids 109, 307 (2017).

    Google Scholar 

  28. N.A. Fleck, X. Qiu, J. Mech. Phys. Solids 55, 562 (2007).

    Google Scholar 

  29. N.E.R. Romijn, N.A. Fleck, J. Mech. Phys. Solids 55, 2538 (2007).

    Google Scholar 

  30. A. Ferrigno, F. Di Caprio, R. Borrelli, F. Auricchio, A. Vigliotti, Materialia 5, 100232 (2019).

    Google Scholar 

  31. M. Dallago, B. Winiarski, F. Zanini, S. Carmignato, M. Benedetti, Int. J. Fatigue 124, 348 (2019).

    Google Scholar 

  32. M.P. Bendsøe, N. Kikuchi, Comput. Methods Appl. Mech. Eng. 71, 197 (1988).

    Google Scholar 

  33. O. Sigmund, J. Mech. Phys. Solids 48, 397 (2000).

    Google Scholar 

  34. V.J. Challis, A.P. Roberts, A.H. Wilkins, Int. J. Solids Struct. 45, 4130 (2008).

    Google Scholar 

  35. O. Sigmund, S. Torquato, Appl. Phys. Lett. 69, 3203 (1996).

    Google Scholar 

  36. E. Andreassen, Optimal Design of Porous Materials (DTU Mechanical Engineering, 2015).

  37. V.J. Challis, J.K. Guest, J.F. Grotowski, A.P. Roberts, Int. J. Solids Struct. 49, 3397 (2012).

    Google Scholar 

  38. M. Osanov, J.K. Guest, Annu. Rev. Mater. Res. 46, 211 (2016).

    Google Scholar 

  39. A. Vigliotti, V.S. Deshpande, D. Pasini, J. Mech. Phys. Solids 64, 44 (2014).

    Google Scholar 

  40. M. Jalalpour, T. Igusa, J.K. Guest, Int. J. Solids Struct. 48, 3011 (2011).

    Google Scholar 

  41. M. Schevenels, B.S. Lazarov, O. Sigmund, Comput. Methods Appl. Mech. Eng. 200, 3613 (2011).

    Google Scholar 

  42. M. Jansen, G. Lombaert, M. Schevenels, Comput. Methods Appl. Mech. Eng. 285, 452 (2015).

    Google Scholar 

  43. S. Chen, W. Chen, S. Lee, Struct. Multidiscipl. Optim. 41, 507 (2010).

    Google Scholar 

  44. M. Tootkaboni, A. Asadpoure, J.K. Guest, Comput. Methods Appl. Mech. Eng. 201–204, 263 (2012).

    Google Scholar 

Download references

Acknowledgements

D.P. acknowledges the support provided by the Natural Sciences and Engineering Research Council of Canada (NSERC). J.K.G. acknowledges support provided by the National Science Foundation (NSF) under Grant No. 1538367 and the National Aeronautics and Space Administration (NASA) under Grant No. 80NSSC18K0428, as well as collaborations with M. Tootkaboni and M. Jalalpour related to the work in Figure 4. The opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the NSF or NASA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damiano Pasini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasini, D., Guest, J.K. Imperfect architected materials: Mechanics and topology optimization. MRS Bulletin 44, 766–772 (2019). https://doi.org/10.1557/mrs.2019.231

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2019.231

Navigation