Skip to main content
Log in

Scanning probe-type data storage beyond hard disk drive and flash memory

  • Materials for Advanced Semiconductor Memories
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

High-density storage technology beyond hard disk drives and flash memory is required. Efforts are underway to develop new high-density storage technology based on scanning probe-based data storage. One of the candidates for scanning probe-type storage is thermomechanical data storage (also known as millipede, developed by IBM Zürich), and another is ferroelectric data storage. In this article, probe data-storage technologies are overviewed. Thermomechanical data storage and ferroelectric data storage are described in detail for next-generation high-density data-storage technology based on scanning probe microscopy. Ferroelectric data storage and scanning nonlinear dielectric microscopy-based and field-effect transistor-type probe-based probe data storage are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. S. Hong, N.Y. Park, “Resistive Probe Storage Devices,” in Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale, S. Kalinin, A. Gruverman, Eds. (Springer, New York, 2007), pp. 943–973.

  2. http://www.enjoythemusic.com/cartridgehistory.htm.

  3. S.X. Wang, A.M. Taratorin, Magnetic Information Storage Technology (Academic Press, San Diego, 1999), chap. 1.

  4. S. Khizroev, D. Litvinov, J. Appl. Phys. 95 (9), 4521 (2004).

    Google Scholar 

  5. G. Binnig, C.F. Quate, Ch. Gerber, Phys. Rev. Lett. 56, 930 (1986), pp. 259–273.

    Google Scholar 

  6. http://nobelprize.org/physics/educational/microscopes/scanning.

  7. M. Lutwyche, C. Andreoli, G. Binnig, J. Brugger, U. Drechsler, W. Häberle, H. Rohrer, H. Rothuizen, P. Vettiger, G. Yaralioglu, C. Quate, Sens. Actuators A Phys. 73 (1–2), 89 (1999).

    Google Scholar 

  8. P. Vettiger, G. Cross, M. Despont, U. Drechsler, U. Duürig, B. Gotsmann, W. Häberle, M.A. Lantz, H.E. Rothuizen, R. Stutz, G.K. Binnig, IEEE Transactions on Nanotechnol. 1, 39 (2002),

    Google Scholar 

  9. W. Gruener, “IBM Puts Millipede on Public Display” (March 11, 2005), http://www.tomshardware.com/news/ibm-puts-millipede-public-display,755.html.

  10. E. Eleftheriou, T. Antonakopoulos, G.K. Binnig, G. Cherubini, M. Despont, A. Dholakia, U. Duerig, M.A. Lantz, H. Pozidis, H.E. Rothuizen, P. Vettiger, IEEE Trans. Magn. 39 (2), 938 (2003).

    Google Scholar 

  11. M.I. Lutwyche, M. Despont, U. Drechsler, U. Durig, W. Haberle, H. Rothuizen, R. Stutz, R. Widmer, G.K. Binnig, P. Vettiger, Appl. Phys. Lett. 77 (20), 3299 (2000).

    Google Scholar 

  12. H. Pozidis, W. Haeberle, D.W. Wiesmann, U. Drechsler, M. Despont, T. Albrecht, E.S. Eleftherioum, IEEE Trans. Magn. 40 (4), 2531 (2004).

    Google Scholar 

  13. HP, “ARS: HP’s Probe Storage Program,” http://www.hp.com/hpinfo/abouthp/iplicensing/ars.html.

  14. Y. Zhao, E. Johns, M. Forrester, “A MEMS Read-Write Head for Ferroelectric Probe Storage,” in 2008 IEEE 21st Int. Conf. Micro Electro Mech. Syst. (2008), pp. 152–155.

  15. M.G. Forrester, J.W. Ahner, M.D. Bedillion, C. Bedoya, D.G. Bolten, K.-C. Chang, G. de Gersem, S. Hu, E.C. Johns, M. Nassirou, J. Palmer, A. Roelofs, M. Siegert, S. Tamaru, V. Vaithyanathan, F. Zavaliche, T. Zhao, Y. Zhao, Nanotechnology 20 (22), 225501 (2009).

    Google Scholar 

  16. K. Yano, M. Kyogaku, R. Kuroda, Y. Shimada, S. Shido, H. Matsuda, K. Takimoto, O. Albrecht, K. Eguchi, T. Nakagiri, Appl. Phys. Lett. 68 (2), 188 (1996).

    Google Scholar 

  17. H. Takahashi, T. Ono, Y. Cho, M.I. Esashi, “Diamond Probe for Ultra-High Density Data Storage Based on Scanning Nonlinear Dielectric Microscopy,” 17th IEEE Int. Conf. Micro Electro Mech. Syst.: Maastricht MEMS 2004 Tech. Dig. 536–539 (2004).

  18. C.S. Lee, H.-J. Nam, Y.-S. Kim, W.-H. Jin, S.-M. Cho, J.-U. Bu, Appl. Phys. Lett. 83 (23), 4839 (2003);

    Google Scholar 

  19. N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, H. Kohlstedt, A. Kingon, N.Y. Park, G.B. Stephenson, I. Stolitchnov, A.K. Tagantsev, D.V. Taylor, T. Yamada, S. Streiffer, J. Appl. Phys. 100, 051606 (2006).

    Google Scholar 

  20. B.M. Kim, D.E. Adams, Q. Tran, Q. Ma, V. Rao, Appl. Phys. Lett. 94, 063105 (2009).

    Google Scholar 

  21. H. Park, J. Jung, D.-K. Min, S. Kim, S. Hong, H. Shin, Appl. Phys. Lett. 84, 1734 (2004).

    Google Scholar 

  22. H. Ko, K. Ryu, H. Park, C. Park, Y.K. Kim, J. Jung, D.-K. Min, Y. Kim, H. Shin, S. Hong, Nano Lett. 11, 1428 (2011).

    Google Scholar 

  23. S. Hong, S. Tong, W.I. Park, Y. Hiranaga, Y. Cho, A. Roelofs, Proc. Natl. Acad. Sci. U.S.A. 111, 6566 (2014).

    Google Scholar 

  24. Y. Cho, Adv. Imaging Electron Phys. 127, 1 (2003).

    Google Scholar 

  25. W.J. Merz, Phys. Rev. 95, 3 (1954).

    Google Scholar 

  26. K. Matsuura, Y. Cho, R. Ramesh, Appl. Phys. Lett. 83, 2650 (2003).

    Google Scholar 

  27. F. Jona, G. Shirane, Ferroelectric Crystals (Pergamon Press, London, 1962), p. 46.

  28. Y. Cho, A. Kirihara, T. Saeki, Rev. Sci. Instrum. 67, 2297 (1996).

    Google Scholar 

  29. Y. Cho, S. Kazuta, K. Matsuura, Appl. Phys. Lett. 75, 2833 (1999).

    Google Scholar 

  30. Y. Cho, Advances in Imaging and Electron Physics, P. Hawkes, Ed. (Academic Press, New York, 2003), vol. 127, p. 1.

  31. Y. Cho, Jpn. J. Appl. Phys. 46, 4428 (2007).

    Google Scholar 

  32. Y. Cho, R. Hirose, Phys. Rev. Lett. 99, 186101 (2007).

    Google Scholar 

  33. P. Guthner, K. Dransfeld, Appl. Phys. Lett. 61, 1137 (1992).

    Google Scholar 

  34. T. Hidaka, T. Maruyama, M. Satoh, N. Mikoshiba, M. Shimizu, T. Shiozaki, L.A. Wills, R. Hiskes, S.A. Dicarolis, J. Amano, Appl. Phys. Lett. 68, 2358 (1996).

    Google Scholar 

  35. A.L. Gruverman, J. Hatano, H. Tokumoto, Jpn. J. Appl. Phys. 36, 2207 (1997).

    Google Scholar 

  36. L.M. Eng, M. Bammerlin, Ch. Loppacher, M. Guggisberg, R. Bennewitz, R. Luthi, E. Meyer, Th. Huser, H. Heinzelmann, H.-J. Guntherodt, Ferroelectrics 222, 153 (1999).

    Google Scholar 

  37. P. Paruch, T. Tybell, J.-M. Triscone, Appl. Phys. Lett. 79, 530 (2001).

    Google Scholar 

  38. K. Tanaka, Y. Kurihashi, T. Uda, Y. Daimon, N. Odagawa, R. Hirose, Y. Hiranaga, Y. Cho, Jpn. J. Appl. Phys. 47, 3311 (2008).

    Google Scholar 

  39. K. Tanaka, Y. Cho, Appl. Phys. Lett. 97, 092901 (2010).

    Google Scholar 

  40. Y. Hiranaga, T. Uda, Y. Kurihashi, H. Tochishita, M. Kadota, Y. Cho, Jpn. J. Appl. Phys. 48, 09KA18 (2009).

    Google Scholar 

  41. T. Aoki, Y. Hiranaga, Y. Cho, J. Appl. Phys. 119, 184101 (2016).

    Google Scholar 

  42. H.-S. Park, J.-H. Jung, S.-B. Hong, US Patent 7,338,831 B2 (2003).

  43. J. Kim, J. Lee, I. Song, J.D. Lee, B.-G. Park, S. Hong, H. Ko, D.-K. Min, H. Park, C. Park, J. Jung, H. Shin, Jpn. J. Appl. Phys. 47, 1717 (2008).

    Google Scholar 

  44. C.H. Ahn, K.M. Rabe, J.M. Triscone, Science 303, 488 (2004).

    Google Scholar 

  45. R. Waser, A. Rüdiger, Nat. Mater. 3, 81 (2004).

    Google Scholar 

  46. E.L. Colla, S. Hong, D.V. Taylor, A.K. Tagantsev, K. No, N. Setter, Appl. Phys. Lett. 72, 2763 (1998).

    Google Scholar 

  47. S. Hong, S.M. Nakhmanson, D.D. Fong, Rep. Prog. Phys. 79, 076501 (2016).

    Google Scholar 

  48. D.D. Fong, G.B. Stephenson, S.K. Streiffer, J.A. Eastman, O. Auciello, P.H. Fuoss, C. Thompson, Science 304, 1650 (2004).

    Google Scholar 

  49. J. Woo, S. Hong, D.K. Min, H. Shin, K. No, Appl. Phys. Lett. 80, 4000 (2002).

    Google Scholar 

  50. S. Hong, Y. Kim, “Ferroelectric Probe Storage Devices,” in Emerging Nonvolatile Memories, S. Hong, O. Auciello, D. Wouters, Eds. (Springer, New York, 2014).

  51. S.-B. Hong, S.-H. Choa, J.-H. Jung, H.-S. Koo, Y.K. Kim, “Ferroelectric Hard Disk System,” US Patent 8,248,906 B2 (2007).

  52. Y. Kim, C. Bae, K. Ryu, H. Ko, Y.K. Kim, S. Hong, H. Shin, Appl. Phys. Lett. 94, 032907 (2009).

    Google Scholar 

  53. A.Q. Jiang, H.J. Lee, G.H. Kim, C.S. Hwang, Adv. Mater. 21, 2870 (2009).

    Google Scholar 

  54. J. Gantz, D. Reinsel, “IDC iVIEW: The Digital Universe in 2020: Big Data, Bigger Digital Shadows, and Biggest Growth in the Far East” (sponsored by EMC Corporation, December 2012).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuo Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, Y., Hong, S. Scanning probe-type data storage beyond hard disk drive and flash memory. MRS Bulletin 43, 365–370 (2018). https://doi.org/10.1557/mrs.2018.98

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2018.98

Navigation