Skip to main content
Log in

Nanoscale thermal transport aspects of heat-assisted magnetic recording devices and materials

  • Materials for Heat-Assisted Magnetic Recording
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Heat-assisted magnetic recording (HAMR) relies on careful management of heat flow at the nanoscale. This article describes the heat-transfer aspects of such a system that must be considered above and beyond standard Fourier’s Law-based heat conduction. A background on nanoscale heat transport is provided that discusses energy carriers and the role of interfaces and microstructure in nanoscale conduction. These heat-transport concepts are applied to the key components of the HAMR system—the head (principally, the near-field transducer [NFT]) and the magnetic medium. This analysis frames the central challenge of thermal engineering for a HAMR system—getting the medium hot enough while maintaining a NFT that it is cool enough to avoid degradation over time. Of particular note are discussions on the role of the interface thermal conductance in the NFT and the importance of thermal anisotropy in the medium due to its granular microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. G.A. Slack, R.A. Tanzilli, R.O. Pohl, J.W. Vandersande, J. Phys. Chem. Solids 48, 641 (1987).

    Google Scholar 

  2. M. Kazan, S. Volz, J. Appl. Phys. 115, 73509 (2014).

    Google Scholar 

  3. Y.S. Touloukian, R.W. Powell, C.Y. Ho, P.G. Klemens, Thermal Conductivity—Metallic Elements and Alloys, Thermophysical Properties of Matter—The TPRC Data Series (Thermophysical and Electronic Properties Information Analysis Center, Lafayette, IN, 1970), vol. 1.

  4. A.L. Moore, L. Shi, Mater. Today 17, 163 (2014).

    Google Scholar 

  5. P.L. Kapitza, J. Phys. (USSR) 4, 181 (1941).

  6. P.L. Kapitza, J. Phys. (USSR) 5, 59 (1941).

  7. H.K. Lyeo, D.G. Cahill, Phys. Rev. B Condens. Matter 73, 144301 (2006).

    Google Scholar 

  8. B.C. Gundrum, D.G. Cahill, R.S. Averback, Phys. Rev. B Condens. Matter 72, 245426 (2005).

    Google Scholar 

  9. R.J. Stoner, H.J. Maris, Phys. Rev. B Condens. Matter 48, 16373 (1993).

    Google Scholar 

  10. P.E. Hopkins, P.M. Norris, R.J. Stevens, T.E. Beechem, S. Graham, J. Heat Transfer 130, 062402 (20008).

    Google Scholar 

  11. J.C. Duda, C.-Y.P. Yang, B.M. Foley, R. Cheaito, D.L. Medlin, R.E. Jones, P.E. Hopkin, Appl. Phys. Lett. 102, 81902 (2013).

    Google Scholar 

  12. K.T. Regner, J.P. Freedman, J.A. Malen, Nanoscale Microscale Thermophys. Eng. 19, 183 (2015).

    Google Scholar 

  13. D.G. Cahill, S.K. Watson, R.O. Pohl, Phys. Rev. B Condens. Matter 46, 6131 (1992).

    Google Scholar 

  14. J.M. Larkin, A.J.H. McGaughey, Phys. Rev. B Condens. Matter 89, 144303 (2014).

    Google Scholar 

  15. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Holt, Rinehart and Winston, New York, 1976).

  16. A. Jain, A.J.H. McGaughey, Phys. Rev. B Condens. Matter 93, 81206 (2016).

    Google Scholar 

  17. W. Wang, D.G. Cahill, Phys. Rev. Lett. 109, 175503 (2012).

    Google Scholar 

  18. Z. Lin, L.V. Zhigilei, V. Celli, Phys. Rev. B Condens. Matter 77, 075133 (2008).

    Google Scholar 

  19. A. Majumdar, P. Reddy, Appl. Phys. Lett. 84, 4768 (2004).

    Google Scholar 

  20. C. Monachon, L. Weber, C. Dames, Annu. Rev. Mater. Res. 46, 433 (2016).

    Google Scholar 

  21. E.T. Swartz, R.O. Pohl, Rev. Mod. Phys. 61, 605 (1989).

    Google Scholar 

  22. J.C. Duda, T.E. Beechem, J.L. Smoyer, P.M. Norris, P.E. Hopkins, J. Appl. Phys. 108, 73515 (2010).

    Google Scholar 

  23. B. Song, A. Fiorino, E. Meyhofer, P. Reddy, AIP Adv. 5, 53503 (2015).

    Google Scholar 

  24. N. Zhou, X. Xu, A.T. Hammack, B.C. Stipe, K. Gao, W. Scholz, E.C. Gage, Nanophotonics 3, 141 (2014).

    Google Scholar 

  25. B.X. Xu, Z.H. Cen, J.H. Goh, J.M. Li, Y.T. Toh, J. Zhang, K.D. Ye, C.G. Quan, J. Appl. Phys. 111, 07B701 (2012).

    Google Scholar 

  26. M.G. Blaber, M.D. Arnold, M.J. Ford, J. Phys. Condens. Matter 22, 143201 (2010).

    Google Scholar 

  27. S. Bhargava, E. Yablonovitch, IEEE Trans. Magn. 51, 1 (2015).

    Google Scholar 

  28. J.P. Freedman, J.H. Leach, E.A. Preble, Z. Sitar, R.F. Davis, J.A. Malen, Sci. Rep. 3, 2963 (2013).

    Google Scholar 

  29. M. Jeong, J.P. Freedman, H.J. Liang, C.-M. Chow, V.M. Sokalski, J.A. Bain, J.A. Malen, Phys. Rev. Appl. 5, 14009 (2016).

    Google Scholar 

  30. J.C. Duda, J.L. Smoyer, P.M. Norris, P.E. Hopkins, Appl. Phys. Lett. 95, 31912 (2009).

    Google Scholar 

  31. R.J. Stevens, A.N. Smith, P.M. Norris, J. Heat Transfer 127, 315 (2005).

    Google Scholar 

  32. T.S. English, J.C. Duda, J.L. Smoyer, D.A. Jordan, P.M. Norris, L.V. Zhigilei, Phys. Rev. B Condens. Matter 85, 35438 (2012).

    Google Scholar 

  33. R. Ji, B. Xu, Z. Cen, J.F. Ying, Y.T. Toh, J. Appl. Phys. 117, 17 (2015).

    Google Scholar 

  34. M.H. Kryder, E.C. Gage, T.W. McDaniel, W.A. Challener, R.E. Rottmayer, G. Ju, Y.-T. Hsia, M.F. Erden, Proc. IEEE 96, 1810 (2008).

    Google Scholar 

  35. Z. Li, W. Chen, C. Rea, M.G. Blaber, N. Zhou, H. Zhou, H. Yin, IEEE Trans. Magn. 53, 9300104 (2017).

    Google Scholar 

  36. P.-O. Jubert, F. Zong, M.K. Grobis, IEEE Trans. Magn. 53, 1 (2017).

    Google Scholar 

  37. J.P. Feser, D.G. Cahill, Rev. Sci. Instrum. 83, 104901 (2012).

    Google Scholar 

  38. H. Ho, A.A. Sharma, W.-L. Ong, J.A. Malen, J.A. Bain, J.-G. Zhu, Appl. Phys. Lett. 103, 131907 (2013).

    Google Scholar 

  39. D.G. Cahill, Rev. Sci. Instrum. 75, 5119 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Bain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bain, J.A., Malen, J.A., Jeong, M. et al. Nanoscale thermal transport aspects of heat-assisted magnetic recording devices and materials. MRS Bulletin 43, 112–118 (2018). https://doi.org/10.1557/mrs.2018.6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2018.6

Navigation