Skip to main content
Log in

Modeling the effects of material chemistry on water flow enhancement in nanotube membranes

  • Materials Enabling Nanofluidic Flow Enhancement
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

This article discusses the modeling of liquid flow inside nanotube membranes. Applying known simplifications to the classical fluid model leads to the so-called Hagen–Poiseuille equation, which predicts no flow for diameters up to 1 nm, and very modest flows in nanochannels up to 100 nm. The main feature of classical fluid dynamics that negates the possibility of high flow is the assumption that fluid molecules closest to the channel wall stick to it, the no-slip boundary condition. In the past 10 years, a wealth of experimental evidence has, on the contrary, demonstrated significant water flow in nanotubes with diameters equal to or smaller than 1 nm, opening the possibility of nanotube membranes capable of high flows and fine separation. These high flows have also been observed in molecular dynamics simulations, particularly for water flowing through carbon nanotubes, showing the presence of strong water slip near the walls of the nanotubes. The term “flow enhancement” has been introduced to refer to the ratio of predicted (or measured) flows and the no-slip Hagen–Poiseuille equation. Both experimental and modeling results point to a strong effect on flow enhancement of the interaction between the fluid and the tube’s wall, particularly the wall surface chemistry and structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. K.P. Lee, T.C. Arnot, D. Mattia, J. Membr. Sci. 370, 1 (2011).

    Google Scholar 

  2. S. Trivedi, K. Alameh, SpringerPlus 5, 1158 (2016).

    Google Scholar 

  3. B. Corry, Energy Environ. Sci. 4, 751 (2011).

    Google Scholar 

  4. D. Mattia, K.P. Lee, F. Calabrò, Curr. Opin. Chem. Eng. 4, 32 (2014).

    Google Scholar 

  5. J.K. Holt, H.G. Park, Y. Wang, M. Stadermann, A.B. Artyukhin, C.P. Grigoropoulos, A. Noy, O. Bakajin, Science 312, 1034 (2006).

    Google Scholar 

  6. M. Majumder, N. Chopra, R. Andrews, B.J. Hinds, Nature 438 (7064), 44 (2005).

    Google Scholar 

  7. M. Whitby, N. Quirke, Nat. Nanotechnol. 2, 87 (2007).

    Google Scholar 

  8. K. Ritos, D. Mattia, F. Calabrò, J.M. Reese, J. Chem. Phys. 140 (1), 014702 (2014).

    Google Scholar 

  9. D. Mattia, H. Leese, K.P. Lee, J. Membr. Sci. 475, 266 (2015).

    Google Scholar 

  10. D. Mattia, F. Calabrò, Microfluid. Nanofluid. 13, 125 (2012).

    Google Scholar 

  11. F. Calabrò, K.P. Lee, D. Mattia, Appl. Math. Lett. 26, 991 (2013).

    Google Scholar 

  12. M. Majumder, N. Chopra, B.J. Hinds, ACS Nano 5, 3867 (2011).

    Google Scholar 

  13. F. Du, L. Qu, Z. Xia, L. Feng, L. Dai, Langmuir 27, 8437 (2011).

    Google Scholar 

  14. C. Lee, S. Baik, Carbon 48 (8), 2192 (2010).

    Google Scholar 

  15. W. Mi, Y.S. Lin, Y. Li. J. Membr. Sci. 304 (1–2), 1 (2007).

    Google Scholar 

  16. Y. Baek, C. Kim, D.K. Seo, T. Kim, J.S. Lee, Y.H. Kim, K.H. Ahn, S.S. Bae, S.C. Lee, J. Lim, K. Lee, J. Yoon, J. Membr. Sci. 460, 171 (2014).

    Google Scholar 

  17. M. Yu, H.H. Funke, J.L. Falconer, R.D. Noble, Nano Lett. 9, 225 (2008).

    Google Scholar 

  18. E. Ruckenstein, P. Rajora, J. Colloid Interface Sci. 96 (2), 488 (1983).

    Google Scholar 

  19. T.D. Blake, Colloids Surf. 47, 135 (1990).

    Google Scholar 

  20. T. Sisan, S. Lichter, Microfluid. Nanofluid. 11, 787 (2011).

    Google Scholar 

  21. J.H. Walther, K. Ritos, E.R. Cruz-Chu, C.M. Megaridis, P. Koumoutsakos, Nano Lett. 13, 1910 (2013).

    Google Scholar 

  22. B. Corry, J. Phys. Chem. B 112 (5), 1427 (2008).

    Google Scholar 

  23. S.K. Kannam, B.D. Todd, J.S. Hansen, P.J. Daivis, J. Chem. Phys. 138, 94701 (2013).

    Google Scholar 

  24. T. Werder, J.H. Walther, R.L. Jaffe, T. Halicioglu, P. Koumoutsakos, J. Phys. Chem. B 107 (6), 1345 (2003).

    Google Scholar 

  25. D. Mattia, Y. Gogotsi, Microfluid. Nanofluid. 5, 289 (2008).

    Google Scholar 

  26. M.H. Köhler, L. Barros da Silva, Chem. Phys. Lett. 645, 38 (2016).

    Google Scholar 

  27. J.A. Thomas, A.J.H. McGaughey, Phys. Rev. Lett. 102, 184502 (2009).

    Google Scholar 

  28. D.C. Tretheway, C.D. Meinhart, Phys. Fluids 14, L9 (2002).

    Google Scholar 

  29. C.H. Choi, J.A. Westin, K.S. Breuer, Phys. Fluids 15, 2897 (2003).

    Google Scholar 

  30. K. Watanabe, Y. Udagawa, H. Udagawa, J. Fluid Mech. 381, 225 (1999).

    Google Scholar 

  31. K.P. Lee, H. Leese, D. Mattia, Nanoscale 4 (8), 2621 (2012).

    Google Scholar 

  32. S. Joseph, N.R. Aluru, Nano Lett. 8, 452 (2008).

    Google Scholar 

  33. W.D. Nicholls, M.K. Borg, D.A. Lockerby, J.M. Reese, Mol. Simul. 38 (10), 781 (2012).

    Google Scholar 

  34. M. Majumder, B. Corry, Chem. Commun. 47, 7683 (2011).

    Google Scholar 

  35. D. Mattia, H.H. Bau, Y. Gogotsi, Langmuir 22, 1789 (2006).

    Google Scholar 

  36. D. Mattia, M.P. Rossi, B.M. Kim, G. Korneva, H.H. Bau, Y. Gogotsi, J. Phys. Chem. B 110, 9850 (2006).

    Google Scholar 

  37. D. Mattia, H. Leese, F. Calabrò, Philos. Trans. R. Soc. Lond. A 374 (2060), 20150268 (2016).

    Google Scholar 

  38. W.D. Nicholls, M.K. Borg, D.A. Lockerby, J.M. Reese, Microfluid. Nanofluid. 12, 257 (2012).

    Google Scholar 

  39. S. Sisavath, X. Jing, C.C. Pain, R.W. Zimmerman, J. Fluids Eng. 124 (1) 273 (2002).

    Google Scholar 

  40. W.-F. Chan, H.-Y. Chen, A. Surapathi, M.G. Taylor, X. Shao, E. Marand J.K. Johnson, ACS Nano 7, 5308 (2013).

    Google Scholar 

  41. J.N. Shen, C.C. Yu, H.M. Ruan, C.J. Gao, B. Van der Bruggen, J. Membr. Sci. 442, 18 (2013).

    Google Scholar 

  42. H. Wu, B. Tang, P. Wu, J. Membr. Sci. 428, 425 (2013).

    Google Scholar 

  43. J.-H. Choi, J. Jegal, W.-N. Kim, J. Membr. Sci. 284, 406 (2006).

    Google Scholar 

  44. M. Bedewy, E.R. Meshot, H. Guo, E.A. Verploegen, W. Lu, A.J. Hart, J. Phys. Chem. C 113 (48), 20576 (2009).

    Google Scholar 

  45. M. Menon, E. Richter, A. Mavrandonakis, G. Froudakis, A. Andriotis, Phys. Rev. B Condens. Matter 69, 1 (2004).

    Google Scholar 

  46. K. Malek, M. Sahimi, J. Chem. Phys. 132, 014310 (2010).

    Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges support from The Engineering and Physical Sciences Research Council Thought Project EP/ M01486X/1 “From Membrane Material Synthesis to Fabrication and Function (SynFabFun).”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Calabrò.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calabrò, F. Modeling the effects of material chemistry on water flow enhancement in nanotube membranes. MRS Bulletin 42, 289–293 (2017). https://doi.org/10.1557/mrs.2017.58

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2017.58

Navigation