Skip to main content

Advertisement

Log in

Thermoelectronic energy conversion: Concepts and materials

  • Electron-Emission Materials
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Thermoelectronic energy conversion can potentially provide an exceptionally efficient way to convert heat into electric power. Key components of such converters are materials with designed, small work functions. We present the principles of thermoelectronic energy conversion and discuss the advantages and challenges of the conversion process, as well the state of the art of the respective research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. G.N. Hatsopoulos, E.P. Gyftopoulos, Thermionic Energy Conversion, Volume I: Processes and Devices (MIT Press, Cambridge, MA, 1973).

    Google Scholar 

  2. B.Y. Moyzhes, T.H. Geballe, J. Phys. D Appl. Phys. 38, 782 (2005).

    Google Scholar 

  3. S. Meir, C. Stephanos, T.H. Geballe, J. Mannhart, J. Renew. Sustain. Energy 5, 043127 (2013).

    Google Scholar 

  4. R. Wanke, G.W.J. Hassink, C. Stephanos, I. Rastegar, W. Braun, J. Mannhart, J. Appl. Phys. 119, 244507 (2016).

    Google Scholar 

  5. M. Reisch, Halbleiter-Bauelemente (Springer, Berlin, 2007).

    Google Scholar 

  6. C.G. Vayenas, S. Bebelis, S. Ladas, Nature 343, 625 (1990).

    Google Scholar 

  7. E. Becquerel, Ann. Chim. Phys. 39, 48 (1853).

    Google Scholar 

  8. F. Guthrie, Proc. R. Soc. Lond. 21, 168 (1873).

    Google Scholar 

  9. T.A. Edison, US Patent 307031 (1884).

  10. W. Schlichter, Ann. Phys. 47, 573 (1915).

    Google Scholar 

  11. I. Novikov, At. Energy 3, 409 (1957).

    Google Scholar 

  12. G. Gryaznov, At. Energy 89, 510 (2000).

    Google Scholar 

  13. R.Y. Belbachir, Z. An, T. Ono, J. Micromech. Microeng. 24, 085009 (2014).

    Google Scholar 

  14. J.-H. Lee, I. Bargatin, B.K. Vancil, T.O. Gwinn, R. Maboudian, N.A. Melosh, R.T. Howe, J. Microelectromech. Syst. 23, 1182 (2014).

    Google Scholar 

  15. K.A. Littau, K. Sahasrabuddhe, D. Barfeld, H. Yuan, Z.-X. Shen, R.T. Howe, N.A. Melosh, Phys. Chem. Chem. Phys. 15, 14442 (2013).

    Google Scholar 

  16. J.H. Lee, I. Bargatin, N.A. Melosh, R.T. Howe, Appl. Phys. Lett. 100, 173904 (2012).

    Google Scholar 

  17. G. Hassink, R. Wanke, I. Rastegar, W. Braun, C. Stephanos, P. Herlinger, J.H. Smet, J. Mannhart, APL Mater. 3, 076106 (2015).

    Google Scholar 

  18. J.W. Schwede, I. Bargatin, D.C. Riley, B.E. Hardin, S.J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R.T. Howe, Z. Shen, N.A. Melosh, Nat. Mater. 9, 762 (2010).

    Google Scholar 

  19. G.F.J. Tyne, Saga of the Vacuum Tube, 2nd printing (Howard W. Sams, Indianapolis, 1987).

  20. J.P. Blewett, J. Appl. Phys. 10, 831 (1939).

    Google Scholar 

  21. J.L. Cronin, IEE Proc. I Solid-State Electron Devices 128, 19 (1981).

    Google Scholar 

  22. J.M. Lafferty, J. Appl. Phys. 22, 299 (1951).

    Google Scholar 

  23. I. Shiota, M.Y. Miyamoto, Eds., Functionally Graded Materials (Elsevier, Amsterdam, 1997).

    Google Scholar 

  24. L. Giordano, F. Cinquini, G. Pacchioni, Phys. Rev. B Condens. Matter 73, 045414 (2006).

    Google Scholar 

  25. V. Vlahos, Y. Lee, J. Booske, D. Morgan, L. Turek, M. Kirshner, R. Kowalczyk, C. Wilsen, Appl. Phys. Lett. 94, 184102 (2009).

    Google Scholar 

  26. J.M. Vaughn, C. Wan, K.D. Jamison, M.E. Kordesch, IBM J. Res. Dev. 55, 414 (2011).

    Google Scholar 

  27. Y. Wang, J. Wang, W. Liu, K. Zhang, J. Li, IEEE Trans. Electron Devices 54, 1061 (2007).

    Google Scholar 

  28. Y. Toda, S. Matsuishi, K. Hayashi, K. Ueda, T. Kamiya, M. Hirano, H. Hosono, Adv. Mater. 16, 685 (2004).

    Google Scholar 

  29. F.A.M. Koeck, R.J. Nemanich, Diam. Relat. Mater. 15, 217 (2006).

    Google Scholar 

  30. P. May, J. Stone, M. Ashfold, K. Hallam, W. Wang, N. Fox, Diam. Relat. Mater. 7, 671 (1998).

    Google Scholar 

  31. F.A.M. Koeck, R.J. Nemanich, A. Lazea, K. Haenen, Diam. Relat. Mater. 18, 789 (2009).

    Google Scholar 

  32. F.A.M. Koeck, R.J. Nemanich, Y. Balasubramaniam, K. Haenen, J. Sharp Diam. Relat. Mater. 20, 1229 (2011).

  33. A.H. Khoshaman, H.D. Fan, AT. Koch, G.A. Sawatzky, A. Nojeh, IEEE Nanotechnol. Mag. 8, 4 (2014).

    Google Scholar 

  34. Y. Zhao, S. Ryu, L.E. Brus, K.S. Kim, P. Kim, Nano Lett. 9, 3430 (2009).

    Google Scholar 

  35. J.K. Chang, W.H. Lin, J.I. Taur, T.H. Chen, G.K. Liao, T.W. Pi, M.H. Chen C.I. Wu, ACS Appl. Mater. Interfaces 7, 17155 (2015).

    Google Scholar 

  36. Z. Zhong, P. Hansmann, Phys. Rev. B Condens. Matter 93, 235116 (2016)

  37. O. Ilic, P. Bermel, G. Chen, J.D. Joannopoulos, I. Celanovic, M. Soljačić, Nat. Nanotechnol. 11, 320 (2016).

    Google Scholar 

  38. http://modernelectron.com.

  39. http://www.cyclotronroad.org/spark/spark.

Download references

Acknowledgements

We gratefully acknowledge productive collaborations and discussions with G. Gassler, T.H. Geballe, P. Hansmann, G. Hassink, S. Meir, C. Stephanos, and Z. Zhong. A. Kyriazis thanks the Max Planck–UBC Center for Quantum Materials for support. This work was supported by the DFG (Leibniz-Preis program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Wanke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wanke, R., Voesch, W., Rastegar, I. et al. Thermoelectronic energy conversion: Concepts and materials. MRS Bulletin 42, 518–524 (2017). https://doi.org/10.1557/mrs.2017.140

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2017.140

Navigation