Skip to main content
Log in

Nucleation of open framework materials: Navigating the voids

  • Nucleation in Atomic, Molecular, and Colloidal Systems
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Research aimed at designing and optimizing open framework materials for commercial applications tend to focus on two critical objectives: identifying synthesis conditions that yield crystals with tailored physicochemical properties, and unlocking the untapped design space to achieve theoretical structures that far outnumber the list of synthetically realized materials. Accomplishing these goals requires detailed knowledge of nucleation in order to cultivate efficient, facile, and economical methods of controlling crystallization. The vast number of open framework materials that can be engineered through the judicious selection of inorganic or organic building units hold the promise for future discovery of materials with unique and superior properties compared to available porous materials. Herein, we review what is known about the nucleation of open framework crystals, highlighting the voids in our understanding of nucleation pathways, and we offer guidelines for advancing crystal engineering in this exciting area of research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. http://www.iza-structure.org/databases.

  2. M. Dincă, A. Dailly, Y. Liu, C.M. Brown, D.A. Neumann, J.R. Long, J. Am. Chem. Soc. 128, 16876 (2006).

    Article  Google Scholar 

  3. H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, Science, 341, 974 (2013).

  4. B.J. Smith, N. Hwang, A.D. Chavez, J.L. Novotney, W.R. Dichtel, Chem. Commun. 51, 7532 (2015).

  5. Y.Z. Liu, C.H. Hu, A. Comotti, M.D. Ward, Science 333, 436 (2011).

  6. M.E. Davis, Nature 417, 813 (2002).

  7. C. Martinez, A. Corma, Coord. Chem. Rev. 255, 1558 (2011).

  8. M.A. Snyder, M. Tsapatsis, Angew. Chem. Int. Ed. 46, 7560 (2007).

  9. O.M. Yaghi, M. O’Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi, J. Kim, Nature 423, 705 (2003).

  10. A. Corma, H. Garcia, F. Xamena, Chem. Rev. 110, 4606 (2010).

  11. A.P. Cote, A.I. Benin, N.W. Ockwig, M. O’Keeffe, A.J. Matzger, O.M. Yaghi, Science 310, 1166 (2005).

  12. R.E. Morris, J. Cejka, Nat. Chem. 7, 381 (2015).

  13. M.W. Deem, R. Pophale, P.A. Cheeseman, D.J. Earl, J. Phys. Chem. C 113, 21353 (2009).

  14. Y.J. Colon, R.Q. Snurr, Chem. Soc. Rev. 43, 5735 (2014).

  15. A. Corma, F. Rey, J. Rius, M.J. Sabater, S. Valencia, Nature 431, 287 (2004).

  16. J.D. Rimer, M. Kumar, R. Li, A.I. Lupulescu, M.D. Oleksiak, Catal. Sci. Technol. 4, 3762 (2014).

  17. C.E. Wilmer, M. Leaf, C.Y. Lee, O.K. Farha, B.G. Hauser, J.T. Hupp, R.Q. Snurr, Nat. Chem. 4, 83 (2012).

  18. B.J. Smith, W.R. Dichtel, J. Am. Chem. Soc. 136, 8783 (2014).

  19. J.J. De Yoreo, P. Gilbert, N. Sommerdijk, R.L. Penn, S. Whitelam, D. Joester, H.Z. Zhang, J.D. Rimer, A. Navrotsky, J.F. Banfield, A.F. Wallace, F.M. Michel, F.C. Meldrum, H. Colfen, P.M. Dove, Science 349, 498 (2015).

  20. D. Kashchiev, J. Chem. Phys. 118, 1837 (2003).

  21. C.S. Cundy, P.A. Cox, Microporous Mesoporous Mater. 82, 1 (2005).

  22. O. Galkin, P.G. Vekilov, Proc. Natl. Acad. Sci. U.S.A. 97, 6277 (2000).

  23. P.G. Vekilov, Cryst. Growth Des. 10, 5007 (2010).

  24. J.D. Rimer, D.G. Vlachos, R.F. Lobo, J. Phys. Chem. B 109, 12762 (2005).

  25. P. de Moor, T.P.M. Beelen, R.A. van Santen, J. Phys. Chem. B 103, 1639 (1999).

  26. N.D. Hould, R.F. Lobo, Chem. Mater. 20, 5807 (2008).

  27. M. Maldonado, M.D. Oleksiak, S. Chinta, J.D. Rimer, J. Am. Chem. Soc. 135, 2641 (2013).

  28. N. Ren, B. Subotic, J. Bronic, Y. Tang, M.D. Sikiric, T. Misic, V. Svetlicic, S. Bosnar, T.A. Jelic, Chem. Mater. 24, 1726 (2012).

  29. S. Mintova, N.H. Olson, T. Bein, Angew. Chem. Int. Ed. 38, 3201 (1999).

  30. S. Mintova, N.H. Olson, V. Valtchev, T. Bein, Science 283, 958 (1999).

  31. T.M. Davis, T.O. Drews, H. Ramanan, C. He, J.S. Dong, H. Schnablegger, M.A. Katsoulakis, E. Kokkoli, A.V. McCormick, R.L. Penn, M. Tsapatsis, Nat. Mater. 5, 400 (2006).

  32. J.M. Fedeyko, J.D. Rimer, R.F. Lobo, D.G. Vlachos, J. Phys. Chem. B 108, 12271 (2004).

  33. S. Kumar, T.M. Davis, H. Ramanan, R.L. Penn, M. Tsapatsis, J. Phys. Chem. B 111, 3398 (2007).

  34. J.D. Rimer, R.F. Lobo, D.G. Vlachos, Langmuir 21, 8960 (2005).

  35. S.-C. Chien, S.M.Auerbach, P.A. Monson, Langmuir 31, 4940 (2015).

  36. D.D. Kragten, J.M. Fedeyko, K.R. Sawant, J.D. Rimer, D.G. Vlachos, R.F. Lobo, M. Tsapatsis, J. Phys. Chem. B 107, 10006 (2003).

  37. J.D. Rimer, O. Trofymluk, A. Navrotsky, R.F. Lobo, D.G. Vlachos, Chem. Mater. 19, 4189 (2007).

  38. S. Kumar, Z.P.Wang, R.L. Penn, M. Tsapatsis, J. Am. Chem. Soc. 130, 17284 (2008).

  39. L. Karwacki, M.H.F. Kox, D.A.M. de Winter, M.R. Drury, J.D. Meeldijk, E. Stavitski, W. Schmidt, M. Mertens, P. Cubillas, N. John, A. Chan, N. Kahn S.R. Bare, M. Anderson, J. Kornatowski, B.M. Weckhuysen, Nat. Mater. 8, 959 (2009).

  40. R.L. Penn, J.F. Banfield, Science 281, 969 (1998).

  41. D.S. Li, M.H. Nielsen, J.R.I. Lee, C. Frandsen, J.F. Banfield, J.J. De Yoreo, Science 336, 1014 (2012).

  42. A. Malani, S.M. Auerbach, P.A. Monson, J. Phys. Chem. C 115, 15988 (2011).

  43. T. Verstraelen, B.M. Szyja, D. Lesthaeghe, R. Declerck, V. Van Speybroeck, M. Waroquier, A.P.J. Jansen, A. Aerts, L.R.A. Follens, J.A. Martens, C.E.A. Kirschhock, R.A. van Santen, Top. Catal. 52, 1261 (2009).

  44. C.-S. Yang, J.M. Mora-Fonz, C.R.A. Catlow, J. Phys. Chem. C 116, 22121 (2012).

  45. X.-Q. Zhang, T.T. Trinh, R.A. van Santen, A.P.J. Jansen, J. Am. Chem. Soc. 133, 6613 (2011).

  46. C.S. Yang, J.M. Mora-Fonz, C.R.A. Catlow, J. Phys. Chem. C 117, 24796 (2013).

  47. M.B. Park, Y. Lee, A.M. Zheng, F.S. Xiao, C.P. Nicholas, G.J. Lewis S.B. Hong, J. Am. Chem. Soc. 135, 2248 (2013).

  48. D. Lesthaeghe, P. Vansteenkiste, T. Verstraelen, A. Ghysels, C.E.A. Kirschhock, J.A. Martens, V. Van Speybroeck, M. Waroquier, J. Phys. Chem. C 112, 9186 (2008).

  49. B.B. Schaack, W. Schrader, T. Schuth, Angew. Chem. Int. Ed. 47, 9092 (2008).

  50. L.R.A. Follens, A. Aerts, M. Haouas, T.P. Caremans, B. Loppinet, B. Goderis, J. Vermant, F. Taulelle, J.A. Martens, C.E.A. Kirschhock, Phys. Chem. Chem. Phys. 10, 5574 (2008).

  51. L. Jin, S.M. Auerbach, P.A. Monson, J. Phys. Chem. Lett. 3, 761 (2012).

  52. S. Caratzoulas, D.G. Vlachos, M. Tsapatsis, J. Am. Chem. Soc. 128, 596 (2006).

  53. A. Navrotsky, O. Trofymluk, A.A. Levchenko, Chem. Rev. 109, 3885 (2009).

  54. D. Wu, A. Navrotsky, J. Solid State Chem. 223, 53 (2015).

  55. K.S. Park, Z. Ni, A.P. Cote, J.Y. Choi, R.D. Huang, F.J. Uribe-Romo, H.K. Chae, M. O’Keeffe, O.M. Yaghi, Proc. Natl. Acad. Sci. U.S.A. 103, 10186 (2006).

  56. A. Navrotsky, Proc. Natl. Acad. Sci. U.S.A. 101, 12096 (2004), doi:10.1073/ pnas.0404778101.

  57. M.Y. Li, M. Dincă Chem. Mater. 27, 3203 (2015).

  58. M. Oleksiak, J.D. Rimer, Rev. Chem. Eng. 30, 1 (2014).

  59. B. Xie, H.Y. Zhang, C.G. Yang, S.Y. Liu, L.M. Ren, L. Zhang, X.J. Meng B. Yilmaz, U. Muller, F.S. Xiao, Chem. Commun. 47, 3945 (2011).

  60. K. Itabashi, Y. Kamimura, K. Iyoki, A. Shimojima, T. Okubo, J. Am. Chem. Soc. 134, 11542 (2012).

  61. P. Eliášová, M. Opanasenko, P.S. Wheatley, M.Shamzhy, M. Mazur, P. Nachtigall J.W. Roth, R.E. Morris, J. Cejka, Chem. Soc. Rev. 44, 7177 (2015).

  62. S.L. Burkett, M.E. Davis, J. Phys. Chem. 98, 4647 (1994).

    Article  CAS  Google Scholar 

  63. B.J. Schoeman, J. Sterte, J.E. Otterstedt, Zeolites 14, 568 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to W.R. Dichtel and M. Dincǎ for providing valuable information on COFs and MOFs. J.D.R. acknowledges support from the National Science Foundation (Award 1151098), the Welch Foundation (Award E-1794), and the US Department of Energy, Office of Basic Energy Sciences (Award DE-SC0014468). M.T. acknowledges support from the Center for Gas Separations Relevant to Clean Energy Technologies, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (Award DE-SC0001015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey D. Rimer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rimer, J.D., Tsapatsis, M. Nucleation of open framework materials: Navigating the voids. MRS Bulletin 41, 393–398 (2016). https://doi.org/10.1557/mrs.2016.89

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2016.89

Navigation