Skip to main content
Log in

Cathodoluminescence microscopy: Optical imaging and spectroscopy with deep-subwavelength resolution

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

An Erratum to this article was published on 08 May 2015

This article has been updated

Abstract

This article describes a new microscope, based on angle-resolved cathodoluminescence (CL) imaging spectroscopy, which enables optical imaging and spectroscopy at deep-subwavelength spatial resolution. We used a free electron beam in a scanning electron microscope as a direct excitation source for polarizable materials, and we collected the emitted coherent visible/infrared CL radiation using a specially designed optical collection system that is integrated in the electron microscope. We have demonstrated the use of this new technique for the excitation of plasmons in single metal nanoparticles, surface plasmon polaritons at metal surfaces, resonant Mie modes in dielectric nanostructures, and cavity modes and Bloch modes in photonic crystals. Using angle-resolved detection, we are able to derive the nature of localized modes and the dispersion of propagation modes in dielectric and plasmonic geometries. An outlook about new directions and applications of CL imaging spectroscopy is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Change history

References

  1. E. Betzig, J.K. Trautman, Science 257, 189 (1992).

    Google Scholar 

  2. T.A. Klar, S.W. Hell, Opt. Lett. 24, 954 (1999).

    Google Scholar 

  3. E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz, H.F. Hess, Science 313, 1642 (2006).

    Google Scholar 

  4. M. Rust, M. Bates, X. Zhuang, Nat. Methods 3, 793 (2006).

    Google Scholar 

  5. F.J. García de Abajo, Rev. Mod. Phys. 82, 209 (2010).

    Google Scholar 

  6. B.G. Jacobi, D.B. Holt, Cathodoluminescence of Inorganic Solids (Plenum, New York, 1990).

  7. A.C. Zonnevylle, R.F.C. van Tol, N. Liv, A.C. Narvaez, A.P.J. Effting, P. Kruit, J.P. Hoogenboom, J. Microsc. 252, 58 (2013).

    Google Scholar 

  8. F.J. García de Abajo, M. Kociak, Phys. Rev. Lett. 100, 106804 (2008).

    Google Scholar 

  9. T. Coenen, E.J.R. Vesseur, A. Polman, Appl. Phys. Lett. 99, 143103 (2011).

    Google Scholar 

  10. N. Yamamoto, S. Ohtani, F.J. García de Abajo, Nano Lett. 11, 91 (2011).

    Google Scholar 

  11. B.J.M. Brenny, T. Coenen, A. Polman, J. Appl. Phys. 115, 244307 (2014).

    Google Scholar 

  12. H. Mertens, J.S. Biteen, H.A. Atwater, A. Polman, Nano Lett. 6, 2622 (2006).

    Google Scholar 

  13. K.C.Y. Huang, M.K. Seo, T. Sarmiento, Y. Huo, J.S. Harris, M.L. Brongersma, Nat. Photonics 8, 244 (2014).

    Google Scholar 

  14. L. Novotny, N. van Hulst, Nat. Photonics 5, 83 (2011).

    Google Scholar 

  15. H.R. Stuart, D.G. Hall, Appl. Phys. Lett. 69, 2327 (1996).

    Google Scholar 

  16. K.R. Catchpole, A. Polman, Appl. Phys. Lett. 93, 191113 (2008).

    Google Scholar 

  17. C. Ayala-Orozco, C. Urban, M.W. Knight, A.S. Urban, O. Neumann, S.W. Bishnoi, S. Mukherjee, A.M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N.J. Halas, A. Joshi, ACS Nano 8, 6372 (2014).

    Google Scholar 

  18. J van de Groep, P. Spinelli, A. Polman, Nano Lett. 12, 3138 (2012).

    Google Scholar 

  19. E.C. Garnett, W. Cai, J.J. Cha, F. Mahmood, S.T. Connor, M.G. Cristoforo, Y. Cui, M.D. McGehee, M.L. Brongersma, Nat. Mater. 11, 241 (2012).

    Google Scholar 

  20. T. Coenen, E.J.R. Vesseur, A. Polman, A.F. Koenderink, Nano Lett. 11, 3779 (2011).

    Google Scholar 

  21. T. Coenen, F. Bernal Arango, A.F. Koenderink, A. Polman, Nat. Commun. 5, 3250 (2014).

    Google Scholar 

  22. T. Coenen, A. Polman, ACS Nano 8, 7350 (2014).

    Google Scholar 

  23. D.T. Schoen, T. Coenen, F.J. García de Abajo, M.L. Brongersma, A. Polman, Nano Lett. 13, 188 (2013).

    Google Scholar 

  24. E.J.R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, A. Polman, Phys. Rev. Lett. 109, 013902 (2013).

    Google Scholar 

  25. T. Coenen, E.J.R. Vesseur, A. Polman, ACS Nano 6, 1742 (2012).

    Google Scholar 

  26. E. Verhagen, M. Spasenovi ć, A. Polman, L. Kuipers, Phys. Rev. Lett. 102, 203904 (2009).

    Google Scholar 

  27. R.F. Oulton, V.J. Sorger, T. Zentgraf, R.M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, Nature 461, 629 (2009).

    Google Scholar 

  28. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, A. Scherer, Nat. Mater. 3, 601 (2004).

    Google Scholar 

  29. H.A. Atwater, A. Polman, Nat. Mater. 9, 205 (2010).

    Google Scholar 

  30. C. Wu, A.B. Khanikaev, R. Adato, N. Arju, A.A. Yanik, H. Altug, G. Shvets, Nat. Mater. 11, 69 (2012).

    Google Scholar 

  31. T. Coenen, J. van de Groep, A. Polman, ACS Nano 7, 1689 (2013).

    Google Scholar 

  32. D.K. Armani, T.J. Kippenberg, S.M. Spillane, K.J. Vahala, Nature 421, 925 (2003).

    Google Scholar 

  33. P. Spinelli, M.A. Verschuuren, A. Polman, Nat. Commun. 3, 692 (2012).

    Google Scholar 

  34. R. Sapienza, T. Coenen, J. Renger, M. Kuttge, N.F. van Hulst, A. Polman, Nat. Mater. 11, 781 (2012).

    Google Scholar 

  35. O. Painter, R.K. Lee, A. Scherer, A. Yariv, J.D. O’Brien, P.D. Dapkus, I. Kim, Science 284, 1819 (1999).

    Google Scholar 

  36. J.J. Wierer Jr., A. David, M.M. Megens, Nat. Photonics 3, 163 (2009).

    Google Scholar 

  37. E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, M. Notomi, Nat. Photonics 8, 474 (2014).

    Google Scholar 

  38. E. Chow, A. Grot, L.W. Mirkarimi, M. Sigalas, G. Girolami, Opt. Lett. 29, 1093 (2004).

    Google Scholar 

Download references

Acknowledgements

This article reviews work carried out in collaboration with Jorik van de Groep, Felipe Bernal Arango, and Femius Koenderink (AMOLF); David Schoen and Mark Brongersma (Stanford University); Humeyra Caglayan and Nader Engheta (University of Pennsylvania); Javier García de Abajo, Martin Kuttge, Jan Renger, and Niek van Hulst (ICFO, Barcelona); and Riccardo Sapienza (Kings College). Technical support, design, and fabrication from Hans Zeijlemaker, Ilya Cerjak, Wim Brouwer, and Jan van der Linden are gratefully acknowledged. This work is part of the research program of the Foundation for Fundamental Research on Matter (FOM), which is financially supported by the Netherlands Organization for scientific Research. It is also supported by the European Research Counsel and by NanoNextNL, a research program funded by the Dutch Ministry of Economic Affairs.

Author information

Authors and Affiliations

Authors

Additional information

The following article is based on the Innovation in Materials Characterization Award presentation given by Albert Polman at the 2014 Materials Research Society Spring Meeting in San Francisco. Polman was recognized “For the development, application, and commercialization of Angle-Resolved Cathodoluminescence Imaging Spectroscopy as a new tool for optical imaging at the nanoscale, with applications in nanophotonics and materials science in general.”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coenen, T., Brenny, B.J.M., Vesseur, E.J. et al. Cathodoluminescence microscopy: Optical imaging and spectroscopy with deep-subwavelength resolution. MRS Bulletin 40, 359–365 (2015). https://doi.org/10.1557/mrs.2015.64

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2015.64

Navigation