Skip to main content

Advertisement

Log in

The challenge of developing rechargeable magnesium batteries

  • Lithium Batteries and Beyond
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The high specific capacity, reactivity, and abundance of magnesium in the earth’s crust and the relatively good safety features of Mg metal, despite its being a reactive metal, drive intensive efforts to develop rechargeable Mg batteries as a follow-up to the success of Li-ion battery technology. However, Mg anodes cannot function in usual non-aqueous electrolyte solutions. Consequently, it is important to develop unique, complex solutions for reversible Mg metal anodes. Also, finding relevant cathode materials that can reversibly insert bivalent Mg ions is a great challenge. In this article, we review the efforts and success in the development of several families of electrolyte solutions for secondary Mg batteries, in which Mg anodes behave fully reversibly, but also exhibit the necessary wide electrochemical window. We also review attempts to develop positive electrodes for rechargeable Mg batteries. The first generation of secondary Mg batteries has already been demonstrated, but their specific energy density remains relatively low. The challenge now is to develop novel Mg battery prototypes that possess high energy density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Y. Gofer, O. Chusid, D. Aurbach, in Encyclopedia of Electrochemical Power Sources, J. Garche, Ed. (Elsevier, Amsterdam, 2009), pp. 285–301.

    Google Scholar 

  2. L.W. Gaddum, H.E. French, J. Am. Chem. Soc. 49, 1295 (1927).

    Google Scholar 

  3. T.D. Gregory, R.J. Hoffman, R.C. Winterton, J. Electrochem. Soc. 137, 775 (1990).

    Google Scholar 

  4. R. Chevrel, M. Sergent, J. Prigent, J. Solid State Chem. 3, 515 (1971).

    Google Scholar 

  5. D. Aurbach, Z. Lu, A. Schechter, Y. Gofer, H. Gizbar, R. Turgeman, Y. Cohen, M. Moshkovich, E. Levi, Nature 407, 724 (2000).

    Google Scholar 

  6. Y. Gofer, R. Turgeman, H. Cohen, D. Aurbach, Langmuir 19, 2344 (2003).

    Google Scholar 

  7. N. Amir, Y. Vestfrid, O. Chusid, Y. Gofer, D. Aurbach, J. Power Sources 174, 1234 (2007).

    Google Scholar 

  8. D. Aurbach, H. Gizbar, A. Schechter, O. Chusid, H.E. Gottlieb, Y. Gofer, I. Goldberg, J. Electrochem. Soc. 149, A115 (2002).

    Google Scholar 

  9. O. Chusid, Y. Gofer, H. Gizbar, Y. Vestfrid, E. Levi, D. Aurbach, I. Riech, Adv. Mater. 15, 627 (2003).

    Google Scholar 

  10. Y. Vestfried, O. Chusid, Y. Goffer, P. Aped, D. Aurbach, Organometallics 26, 3130 (2007).

    Google Scholar 

  11. N. Pour, Y. Gofer, D.T. Major, D. Aurbach, J. Am. Chem. Soc. 133, 6270 (2011).

    Google Scholar 

  12. C. Liebenow, Z. Yang, P. Lobitz, Electrochem. Commun. 2, 641 (2000).

    Google Scholar 

  13. H.S. Kim, T.S. Arthur, G.D. Allred, J. Zajicek, J.G. Newman, A.E. Rodnyansky, A.G. Oliver, W.C. Boggess, J. Muldoon, Nat. Commun. 2, 427 (2011).

    Google Scholar 

  14. R.E. Doe, R. Han, J. Hwang, A.J. Gmitter, I. Shterenberg, H.D. Yoo, N. Pour, D. Aurbach, Chem. Commun. 50, 243 (2014).

    Google Scholar 

  15. O. Shimamura, N. Yoshimoto, M. Matsumoto, M. Egashia, M. Morita, J. Power Sources 196, 1586 (2011).

    Google Scholar 

  16. T.T. Tran, W.M. Lamanna, M.N. Obrovac, J. Electrochem. Soc. 159, A2005 (2012).

    Google Scholar 

  17. R. Shannon, Acta Crystallogr. Sect. A: Found. Crystallogr. 32, 751 (1976).

    Google Scholar 

  18. G.G. Amatucci, F. Badway, A. Singhal, B. Beaudoin, G. Skandan, T. Bowmer, I. Plitza, N. Pereira, T. Chapman, R. Jaworski, J. Electrochem. Soc. 148, A940 (2001).

    Google Scholar 

  19. D. Aurbach, I. Weissman, Y. Gofer, E. Levi, Chem. Rec. 3, 61 (2003).

    Google Scholar 

  20. D. Aurbach, G.S. Suresh, E. Levi, A. Mitelman, O. Mizrahi, O. Chusid, M. Brunelli, Adv. Mater. 19, 4260 (2007).

    Google Scholar 

  21. A. Mitelman, M.D. Levi, E. Lancry, E. Levi, D. Aurbach, Chem. Commun. 44, 4212 (2007).

    Google Scholar 

  22. E. Levi, M.D. Levi, O. Chasid, D. Aurbach, J. Electroceram. 22, 13 (2009).

    Google Scholar 

  23. E. Levi, G. Gershinsky, D. Aurbach, O. Isnard, G. Ceder, Chem. Mater. 21, 1390 (2009).

    Google Scholar 

  24. E. Lancry, E. Levi, A. Mitelman, S. Malovany, D. Aurbach, J. Solid State Chem. 179, 1879 (2006).

    Google Scholar 

  25. G. Gershinsky, O. Haik, G. Salitra, J. Grinblat, E. Levi, G.D. Nessim, E. Zinigrad, D. Aurbach, J. Solid State Chem. 188, 50 (2012).

    Google Scholar 

  26. R. Mohtadi, M. Matsui, T.S. Arthur, S.-J. Hwang, Angew. Chem. Int. Ed. 51 (39), 9780 (2012).

    Google Scholar 

  27. Y. Shao, T. Liu, G. Li, M. Gu, Z. Nie, M. Engelhard, J. Xiao, D. Lv, C. Wang, J.G. Zhang, J. Liu, Sci. Rep. 3, 3130 (2013).

    Google Scholar 

  28. J. Zhu, Y. Guo, J. Yang, Y. Nuli, F. Zhang, J. Wang, S.-I. Hirano, J. Power Sources 248, 690 (2014).

    Google Scholar 

  29. S. Seghir, C. Boulanger, S. Diliberto, M. Potel, J.M. Lecuire, Electrochim. Acta 55, 1097 (2010).

    Google Scholar 

  30. E. Guyot, S. Seghir, J.M. Lecuire, C. Boulanger, M.D. Levi, Y. Shilina, V. Dargel, D. Aurbach, J. Electrochem. Soc. 160, A420 (2013).

    Google Scholar 

  31. E. Levi, Y. Gofer, D. Aurbach, Chem. Mater. 22, 860 (2010).

    Google Scholar 

  32. P. Novak, J. Desilvestro, J. Electrochem. Soc. 140, 140 (1993).

    Google Scholar 

  33. P. Novák, W. Scheifele, F. Joho, O. Haas, J. Electrochem. Soc. 142, 2544 (1995).

    Google Scholar 

  34. P. Novák, W. Scheifele, O. Haas, J. Power Sources 54, 479 (1995).

    Google Scholar 

  35. M.E. Spahr, P. Novak, O. Haas, R. Nesper, J. Power Sources 54, 346 (1995).

    Google Scholar 

  36. L. Sanchez, J.-P. Pereira-Ramos, J. Mater. Chem. 7, 471 (1997).

    Google Scholar 

  37. Z. Feng, J. Yang, Y. NuLi, J. Wang, J. Power Sources 184, 604 (2008).

    Google Scholar 

  38. Y. Zheng, Y. NuLi, Q. Chen, Y. Wang, J. Yang, J. Wang, Electrochim. Acta 66, 75 (2012).

    Google Scholar 

  39. K. Makino, Y. Katayama, T. Miura, T. Kishi, J. Power Sources 99, 66 (2001).

    Google Scholar 

  40. K. Makino, Y. Katayama, T. Miura, T. Kishi, J. Power Sources 112, 85 (2002).

    Google Scholar 

  41. R. Zhang, X. Yu, K.-W. Nam, C. Ling, T.S. Arthur, W. Song, A.M. Knapp, S.N. Ehrlich, X.-Q. Yang, M. Matsui, Electrochem. Commun. 23, 110 (2012).

    Google Scholar 

  42. S. Rasul, S. Suzuki, S. Yamaguchi, M. Miyayama, Electrochim. Acta 82, 243 (2012).

    Google Scholar 

  43. J. Giraudet, D. Claves, K. Guerin, M. Dubois, A. Houdayer, F. Masin, A. Hamwi, J. Power Sources 173, 592 (2007).

    Google Scholar 

  44. J.V. Rani, S.B. Rushi, V. Kanakaiah, S. Palaniappan, J. Electrochem. Soc. 158, A1031 (2011).

    Google Scholar 

  45. T. Ichitsubo, T. Adachi, S. Yagi, T. Doi, J. Mater. Chem. 21, 11764 (2011).

    Google Scholar 

  46. C. Ling, F. Mizuno, Chem. Mater. 25, 3062 (2013).

    Google Scholar 

  47. Z.L. Tao, L.N. Xu, X.L. Gou, J. Chen, H.T. Yuan, Chem. Commun. 2080 (2004).

  48. Y. Liang, R. Feng, S. Yang, H. Ma, J. Liang, J. Chen, Adv. Mater. 23, 640 (2011).

    Google Scholar 

  49. D. Imamura, M. Miyayama, Solid State Ionics 161, 173 (2003).

    Google Scholar 

  50. D. Imamura, M. Miyayama, M. Hibino, T. Kudo, J. Electrochem. Soc. 150, A753 (2003).

    Google Scholar 

  51. V. Petkov, P.Y. Zavalij, S. Lutta, M.S. Whittingham, V. Parvanov, S. Shastri, Phys. Rev. B 69, 085410 (2004).

    Google Scholar 

  52. G. Sudant, E. Baudrin, B. Dunn, J.-M. Tarascon, J. Electrochem. Soc. 151, A666 (2004).

  53. K. Chang, W. Chen, L. Ma, H. Li, H. Li, F. Huang, Z. Xu, Q. Zhang, J.-Y Lee, J. Mater. Chem. 21, 6251 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivgeni Shterenberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shterenberg, I., Salama, M., Gofer, Y. et al. The challenge of developing rechargeable magnesium batteries. MRS Bulletin 39, 453–460 (2014). https://doi.org/10.1557/mrs.2014.61

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2014.61

Navigation