Skip to main content
Log in

Illuminating nano-bio interactions: A spectroscopic perspective

  • Biological Interactions of Oxide Nanoparticles: The Good and The Evil
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Engineered nanomaterials (ENMs) strongly interact with biomolecules and cells due to their similar size scales. Consequently, ENMs are beginning to emerge as new medical diagnostic tools, probes in cell biology, and delivery vehicles, compelling us to understand the interactions at the nano-bio interface. Optical spectroscopic tools are excellent probes to characterize ENMs and investigate their interactions with complex biological systems, including biomolecules, cells, and even whole animals alike. Here, we discuss the role of many optical spectroscopic techniques such as fluorescence, Raman, surface plasmon, and infrared spectroscopy in elucidating nano-bio interactions. While these spectroscopic tools have the ability to provide valuable information on ENM distribution in biosystems, ENM interaction with proteins, and the mechanisms by which ENMs elicit an adverse physiological response, there are many challenges that remain to be addressed to improve their scope, resolution, and throughput.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. A.D. Maynard, Nat. Nanotechnol. 9 (3), 159 (2014).

    Google Scholar 

  2. R. Podila, J.M. Brown, J. Biochem. Mol. Toxicol. 27 (1), 50 (2013).

    Google Scholar 

  3. C.A. Poland, R. Duffin, I. Kinloch, A. Maynard, W.A.H. Wallace, A. Seaton, V. Stone, S. Brown, W. MacNee, K. Donaldson, Nat. Nanotechnol. 3 (7), 423 (2008).

    Google Scholar 

  4. J.H. Shannahan, J.M. Brown, Curr. Opin. Allergy Clin. Immunol. 14 (2), 95 (2014).

    Google Scholar 

  5. A.-J. Miao, X.-Y. Zhang, Z. Luo, C.-S. Chen, W.-C. Chin, P.H. Santschi, A. Quigg, Environ. Toxicol. Chem. 29 (12), 2814 (2010).

    Google Scholar 

  6. J.C. Bonner, R.M. Silva, A.J. Taylor, J.M. Brown, S.C. Hilderbrand, V. Castranova, D. Porter, A. Elder, G. Oberdoerster, J.R. Harkema, L.A. Bramble, T.J. Kavanagh, D. Botta, A. Nel, K.E. Pinkerton, Environ. Health Perspect. 121 (6), 676 (2013).

    Google Scholar 

  7. H. Meng, Z. Chen, G. Xing, H. Yuan, C. Chen, F. Zhao, C. Zhang, Y. Zhao, Toxicol. Lett. 175 (1–3), 102 (2007).

  8. H.L. Karlsson, P. Cronholm, J. Gustafsson, L. Moeller, Chem. Res. Toxicol. 21 (9), 1726 (2008).

    Google Scholar 

  9. A.M. Derfus, W.C.W. Chan, S.N. Bhatia, Nano Lett. 4 (1), 11 (2004).

    Google Scholar 

  10. X. Yang, A.P. Gondikas, S.M. Marinakos, M. Auffan, J. Liu, H. Hsu-Kim, J.N. Meyer, Environ. Sci. Technol. 46 (2), 1119 (2012).

    Google Scholar 

  11. S. Kittler, C. Greulich, J. Diendorf, M. Koeller, M. Epple, Chem. Mater. 22 (16), 4548 (2010).

    Google Scholar 

  12. Z. Liu, S. Tabakman, K. Welsher, H. Dai, Nano Res. 2 (2), 85 (2009).

    Google Scholar 

  13. K. Yamashita, Y. Yoshioka, K. Higashisaka, K. Mimura, Y. Morishita, M. Nozaki, T. Yoshida, T. Ogura, H. Nabeshi, K. Nagano, Y. Abe, H. Kamada, Y. Monobe T. Imazawa, H. Aoshima, K. Shishido, Y. Kawai, T. Mayumi, S.-I. Tsunoda, N. Itoh, T. Yoshikawa, I. Yanagihara, S. Saito, Y. Tsutsumi, Nat. Nanotechnol. 6 (5), 321 (2011).

    Google Scholar 

  14. T.L. Moore, R. Podila, F. Alexis, A.M. Rao, Part. Part. Syst. Charact. (forthcoming), doi: 10.1002/ppsc.201300379.

  15. A. Jorio, L.G. Cancado, Phys. Chem. Chem. Phys. 14 (44), 15246 (2012).

    Google Scholar 

  16. M.L. Schipper, N. Nakayama-Ratchford, C.R. Davis, N.W.S. Kam, P. Chu, Z. Liu, X. Sun, H. Dai, S.S. Gambhir, Nat. Nanotechnol. 3 (4), 216 (2008).

    Google Scholar 

  17. B.R. Smith, C. Zavaleta, J. Rosenberg, R. Tong, J. Ramunas, Z. Liu, H. Dai, S.S. Gambhir, Nano Today 8 (2), 126 (2013).

    Google Scholar 

  18. C.J. Wingard, D.M. Walters, B.L. Cathey, S.C. Hilderbrand, P. Katwa, S. Lin, P.C. Ke, R. Podila, A.M. Rao, R.M. Lust, J.M. Brown, Nanotoxicology 5 (4), 531 (2011).

    Google Scholar 

  19. R. Podila, P. Vedantam, P.C. Ke, J.M. Brown, A.M. Rao, J. Phys. Chem. C 116 (41), 22098 (2012).

    Google Scholar 

  20. J.H. Shannahan, J.M. Brown, R. Chen, P.C. Ke, X. Lai, S. Mitra, F.A. Witzmann, Small 9 (12), 2171 (2013).

    Google Scholar 

  21. J.H. Shannahan, X. Lai, P.C. Ke, R. Podila, J.M. Brown, F.A. Witzmann PloS One 8 (9), 374001 (2013).

  22. A. Nel, T. Xia, L. Madler, N. Li, Science311 (5761), 622 (2006).

  23. G. Oberdorster, Philos. Trans. R. Soc. Lond. A 358 (1775), 2719 (2000).

  24. K. Donaldson, V. Stone, P.S. Gilmour, D.M. Brown, W. MacNee, Philos. Trans. R. Soc. Lond. A 358 (1775), 2741 (2000).

    Google Scholar 

  25. D. Costa, J. Guignard, R. Zalma, H. Pezerat, Toxicol. Ind. Health 5 (6), 1061 (1989).

  26. R. Podila, R. Chen, P.C. Ke, J.M. Brown, A.M. Rao, Appl. Phys. Lett. 101 (26), 263701 (2012).

    Google Scholar 

  27. N. Fairbairn, A. Christofidou, A.G. Kanaras, T.A. Newman, O.L. Muskens, Phys. Chem. Chem. Phys. 15, 4163 (2013).

    Google Scholar 

  28. E. Casals, T. Pfaller, A. Duschl, G.J. Oostingh, V. Puntes, ACS Nano 4 (7) 3623 (2010).

  29. A. Kathiravan, G. Paramaguru, R. Renganathan, J. Mol. Struct. 934 (1–3) 129 (2009).

  30. A. Ivask, K. Juganson, O. Bondarenko, M. Mortimer, V. Aruoja, K. Kasemets, I. Blinova, M. Heinlaan, V. Slaveykova, A. Kahru, Nanotoxicology 8 (S1), 57 (2014).

  31. T.J. Brunner, P. Wick, P. Manser, P. Spohn, R.N. Grass, L.K. Limbach, A. Bruinink, W.J. Stark, Environ. Sci. Technol. 40, 4374 (2006).

    Google Scholar 

  32. O. Bondarenko, K. Juganson, A. Ivask, K. Kasemets, M. Mortimer, A. Kahru Arch. Toxicol. 87 (7), 1181 (2013).

  33. A. Ivask, T. Rõlova, A. Kahru, BMC Biotech. 9 (1), 41 (2009).

    Google Scholar 

  34. M. Heinlaan, A. Ivask, I. Blinova, H.-C. Dubourguier, A. Kahru, Chemosphere 71 (7), 1308 (2008).

    Google Scholar 

  35. K. Zagorovsky, W.C.W. Chen, Nat. Mater. 12, 285 (2013).

    Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants R01 ES019311, R03 ES023036, and U19 ES019525. R.P. and A.M.R. also thank the Clemson University TIGER grant for providing financial support for these projects. A.K. acknowledges support by the Estonian IUT 23-5 grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramakrishna Podila.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podila, R., Brown, J.M., Kahru, A. et al. Illuminating nano-bio interactions: A spectroscopic perspective. MRS Bulletin 39, 990–995 (2014). https://doi.org/10.1557/mrs.2014.248

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2014.248

Navigation